精英家教网 > 高中数学 > 题目详情
已知函数.
(1)求函数的最小值;
(2)若,证明:当时,.
(1)h(0)=0;(2)证明过程详见解析.

试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值、不等式的基本性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力,考查学生的函数思想.第一问,先得到表达式,对求导,利用“单调递增;单调递减”解不等式求函数的单调区间,利用函数的单调性确定最小值所在的位置;第二问,先将代入到所求的式子中,得到①式,再利用第一问的结论,即,即得到,通过,在上式中两边同乘得到②式,若成立则所求证的表达式成立,所以构造函数φ(t)=(1-t)k-1+kt,证明即可.
(1)h(x)=f(x)-g(x)=ex-1-x,h¢(x)=ex-1.
当x∈(-∞,0)时,h¢(x)<0,h(x)单调递减;
当x∈(0,+∞)时,h¢(x)>0,h(x)单调递增.
当x=0时,h(x)取最小值h(0)=0.       4分
(2).   ①
由(1)知,,即
,则
所以.       ②  7分
设φ(t)=(1-t)k-1+kt,t∈[0,1].
由k>1知,当t∈(0,1)时,φ¢(t)=-k(1-t)k-1+k=k[1-(1-t)k]>0,
φ(t)在[0,1]单调递增,当t∈(0,1)时,φ(t)>φ(0)=0.
因为,所以
因此不等式②成立,从而不等式①成立.      12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14分)(2011•福建)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中),为f(x)的导函数.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数上的最大值为).
(1)求数列的通项公式;
(2)求证:对任何正整数n (n≥2),都有成立;
(3)设数列的前n项和为Sn,求证:对任意正整数n,都有成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为小于的常数).
(1)当时,求函数的单调区间;
(2)存在使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:f′′(x)是函数y=f(x)的导数f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有′拐点′;任何一个三次函数都有对称中心,且‘拐点’就是对称中心”.请你将这一发现作为条件,则函数f(x)=x3-3x2+3x的对称中心为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则=     (     )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数,则(    ).
A.B.
C.D.

查看答案和解析>>

同步练习册答案