精英家教网 > 高中数学 > 题目详情
已知m、k为常数,设命题甲:a、b、c成等差数列;命题乙:ma+k,mb+k,mc+k成等差数列,那么甲是乙的(    )

A.充分条件                            B.必要条件

C.充要条件                            D.既不是充分条件,又不是必要条件

A

解析:根据等差数列的定义可得甲乙;当m=0时,乙甲.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x 2+ax+a
x
,且a<1.
(1)当x∈[1,+∞)时,判断f(x)的单调性并证明;
(2)在(1)的条件下,若m满足f(3m)>f(5-2m),试确定m的取值范围.
(3)设函数g(x)=x•f(x)+|x2-1|+(k-a)x-a,k为常数.若关于x的方程g(x)=0在(0,2)上有两个解x1,x2,求k的取值范围,并比较
1
x1
+
1
x2
与4的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,如果存在函数g(x)=ax(a为常数),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知对于任意k∈(0,1),g(x)=ax是函数f(x)=e
x
k
的一个承托函数,记实数a的取值范围为集合M,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列,设m,n,p,k都是正整数.
(1)求证:若m+n=2p,则am+an=2ap,bmbn=(bp2
(2)若an=3n+1,是否存在m,k,使得am+am+1=ak?请说明理由;
(3)求使命题P:“若bn=aqn(a、q为常数,且aq≠0)对任意m,都存在k,有bmbm+1=bk”成立的充要条件.

查看答案和解析>>

科目:高中数学 来源:0107 期中题 题型:解答题

设等比数列的前n项和为,等差数列的前n项和为,已知(其中c为常数),
(1)求常数c的值及数列的通项公式
(2)设,设数列的前n项和为,若不等式对于任意的恒成立,求实数m的最大值与整数k的最小值。
(3)试比较与2的大小关系,并给出证明。

查看答案和解析>>

同步练习册答案