精英家教网 > 高中数学 > 题目详情
已知椭圆:和圆,过椭圆上一点引圆的两
条切线,切点分别为. 若椭圆上存在点,使得,则椭圆离心率的取值范围
是(     )
A.B.C.D.
D

试题分析:因为,所以,及圆的性质可得
所以,所以,所以,又因为
所以.
点评:本题考查直线与椭圆的位置关系,考查椭圆的几何性质,考查学生的计算能力,属于
基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

曲线C的直角坐标方程为,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为 __________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 圆O是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若△是锐角三角形,则该双曲线离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知坐标平面上点与两个定点的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线所截得的线段的长为8,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,已知△ABC顶点,顶点B在椭圆上,则      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆的离心率为         .    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=
(1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2

查看答案和解析>>

同步练习册答案