精英家教网 > 高中数学 > 题目详情
若椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆的离心率为         .    
.

试题分析:因为椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,所以借助于椭圆的对称性,椭圆的离心率=cos45°=

点评:简单题,注意到椭圆的离心率即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

双曲线方程为x-2y=1.则它的右焦点坐标是(  )
A.(,0)B.(,0)C.(,0)D.(,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆:和圆,过椭圆上一点引圆的两
条切线,切点分别为. 若椭圆上存在点,使得,则椭圆离心率的取值范围
是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有相同的焦点,若cam的等比中项,n2是2m2c2的等差中项,则椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

ABC的两个顶点坐标分别是B(0,6)和C(0,-6),另两边ABAC的斜率的乘积是-,求顶点A的轨迹方程.?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,轴截面为边长为等边三角形的圆锥,过底面圆周上任一点作一平面,且与底面所成二面角为,已知与圆锥侧面交线的曲线为椭圆,则此椭圆的离心率为(  )
A.  B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是F抛物线与椭圆的公共焦点,且椭圆的离心率为

(1)求椭圆的方程;
(2)过抛物线上一点P,作抛物线的切线,切点P在第一象限,如图,设切线与椭圆相交于不同的两点A、B,记直线OP,FA,FB的斜率分别为(其中为坐标原点),若,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于两点,使得.
(1)求椭圆的方程;(2)求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为         

查看答案和解析>>

同步练习册答案