精英家教网 > 高中数学 > 题目详情
已知椭圆与双曲线有相同的焦点,若cam的等比中项,n2是2m2c2的等差中项,则椭圆的离心率为
A.B.C.D.
A

试题分析:根据是a、m的等比中项可得c2=am,根据椭圆与双曲线有相同的焦点可得a2+b2=m2+n2=c,根据n2是2m2与c2的等差中项可得2n2=2m2+c2,联立方程即可求得a和c的关系,进而求得离心率e.
解:根据题意, ,故选A.
点评:本题主要考查了椭圆的性质,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

动圆过定点,且与直线相切,其中.设圆心的轨迹的程为
(1)求
(2)曲线上的一定点(0) ,方向向量的直线(不过P点)与曲线交与A、B两点,设直线PA、PB斜率分别为,计算
(3)曲线上的两个定点,分别过点作倾斜角互补的两条直线分别与曲线交于两点,求证直线的斜率为定值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知坐标平面上点与两个定点的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线所截得的线段的长为8,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,已知△ABC顶点,顶点B在椭圆上,则      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆的离心率为         .    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设命题p:函数上是增函数;命题q:方程有两个不相等的负实数根。求使得pq是真命题的实数对为坐标的点的轨迹图形及其面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别是双曲线)的两个焦点,是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则该双曲线的离心率为(   )
A.B.C.2D.

查看答案和解析>>

同步练习册答案