精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3x-1
(1)求f(x)在[-2,2]上的极大值与极小值;
(2)若函数f(x)在[m,m+1]上是减函数,求实数m的取值范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:导数的概念及应用
分析:(1)先求出函数的导数,得到函数的单调区间,找到极值点,从而求出函数的极值;
(2)由(1)知,函数f(x)在[-1,1]上单调递减,故[m,m+1]⊆[-1,1],通过解方程组得出-1≤m≤0.
解答: 解:(1)∵f′(x)=3x2-3,
由f′(x)=0,得x=±1,
则x,f′(x),f(x)的变化情况如下表:
x (-∞,-1) -1 (-1,1) 1 (1,+∞)
f′(x) + 0 - 0 +
f(x) 极大值 极小值
故当x=-1时,f(x)取极大值1;当x=1时,f(x)取极小值-1,
(2)由(1)知,函数f(x)在[-1,1]上单调递减,
故[m,m+1]⊆[-1,1]
于是
m≥-1
m+1≤1

即-1≤m≤0.
∴m的范围是:[-1,0].
点评:本题考察了利用导数研究函数的单调性,函数的极值问题,参数的取值范围,本题是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.每个位置所用数字只有0和1,设与信息0110有X个对应位置上的数字相同,则X的均值为(  )
A、1B、4C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

掌握数学,一个美好的祝愿:张开你的右手,你将看到你的掌纹,有人称它是命运的密语,其实是我们所熟悉函数的图象,每天都握在我们的掌心.某人的掌纹如图所示,在所给的直角坐标系中,它们只可能是下列给出的5个函数中的(  )
①y=(
3
2
x  
②y=(
2
3
x   
③y=
x
-
1
2
  
④y=ln(x+
1
2
)   
⑤y=ln(x-
1
2
A、②③⑤B、①③④
C、①③⑤D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

cos(-60°)=(  )
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=2sin(x+
π
3
)的图象上所有点的横坐标缩短到原来的
1
2
(纵坐标不变),所得图象对应的表达式为(  )
A、y=2sin(
1
2
x+
π
3
B、y=2sin(
1
2
x+
π
6
C、y=2sin(2x+
π
3
D、y=2sin(2x+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列{an}的通项公式an
(2)若数列{bn}是等差数列,且bn=
Sn
n+c
,求非零常数c;
(3)在(2)的条件下,设cn=an2-λbn,已知数列{cn}为递增数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为 y2=4x.
(Ⅰ)写出其焦点F的坐标和准线l的方程;
(Ⅱ)直线l过焦点F,斜率为1,交抛物线C于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在对哈三中高二学生喜欢学的科目的一次调查中,共调查了200人,其中男同学120 人,女同学80人,男同学中有80人喜欢学数学,另外40人喜欢学语文;女同学中有30人喜欢学数学,另外50人喜欢学语文.
(Ⅰ)填表,完成2×2列联表;
喜欢科目
性别
数学 语文 总计
总计
(Ⅱ)能否在犯错误的概率不超过0.01的前提下认为性别与喜欢科目有关系?参考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

设p(x)=a1
C
0
n
(2-x)n+a2
C
1
n
x(2-x)n-1+a3
C
2
n
x2(2-x)n-2+…+an
C
n-1
n
xn-1(2-x)+an+1
C
n
n
xn
(Ⅰ)若数列{an}是首项为1,公比为3的等比数列,求p(-
1
2
)的值;
(Ⅱ)若数列{an}是首项为1,公差为3的等差数列,求证:p(x)是关于x的一次多项式.

查看答案和解析>>

同步练习册答案