精英家教网 > 高中数学 > 题目详情
7.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,则实数a的取值范围是a≥2,若A∩B=∅,则a的范围为a≤1.

分析 根据题意,将集合A在数轴上表示出来,对于第一空,若A∩B=A,则有A⊆B,即A是B的子集,结合集合A在数轴上的表示,分析可得a的范围,对于第二空,若A∩B=∅,即A、B没有公共部分,分析可得答案.

解答 解:根据题意,集合A={x|1≤x≤2},在数轴上表示为:
若A∩B=A,则有A⊆B,必有a≥2,
若A∩B=∅,必有a≤1,
故答案为:a≥2,a≤1.

点评 本题考查集合包含关系的运用,关键是根据题意,分析得到集合之间的包含关系,可以借助数轴进行分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{{{x^2}+3}}{x-m}$(m∈R,x>m).
(1)若f(x)+m≥0恒成立,求m的取值范围;
(2)若f(x)的最小值为6,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合M={x|x>-2},则下列选项正确的是(  )
A.{0}∈MB.Φ∈MC.{0}⊆MD.0⊆M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知奇函数f(x)定义域为(-∞,0)∪(0,+∞),f′(x)为其导函数,且满足以下条件①x>0时,f′(x)<$\frac{3f(x)}{x}$;②f(1)=$\frac{1}{2}$;③f(2x)=2f(x),则不等式$\frac{f(x)}{4x}$<2x2的解集为(-$∞,-\frac{1}{4}$)$∪(\frac{1}{4},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.关于x的方程x2+2(m+1)x+2m+6=0有两个实根,一个比2大,一个比2小,则实数m的范围为m<-$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:(1)0.2-20+($\frac{1}{27}$${\;}^{-\frac{1}{3}}$);
(2)log3.19.61+lg$\frac{1}{1000}$+ln(e2•$\root{3}{e}$)+log3(log327)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.《张邱建算经》是我国古代数学著作大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月,日织九匹三丈,问日益几何?”该题大意是:“一女子擅长织布,一天比一天织的快,而且每天增加的量都一样,已知第一天织了5尺,一个月后,共织布390尺,问该女子每天增加$\frac{16}{29}$尺.(一月按30天计)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若圆C:(x-5)2+(y+1)2=m(m>0)上有且只有一点到直线4x+3y-2=0的距离为1,则实数m的值为(  )
A.4B.16C.4或16D.2或4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=f(x)定义在R上的奇函数,且当x≥0时,f(x)=x2-3x+b,则f(-2)=(  )
A.-2B.2C.10D.-10

查看答案和解析>>

同步练习册答案