精英家教网 > 高中数学 > 题目详情
已知复数z1满足(1+i)z1=-1+5i,z2=a-2-i,其中i为虚数单位,a∈R,若|z1-
.
z2
|
<|z1|,求a的取值范围.
分析:先求复数Z1,然后代入|z1-
.
z2
|
<|z1|,解二次不等式即可求出a的范围.
解答:解:由题意得z1=
-1+5i
1+i
=2+3i,
于是|z1-
.
z2
|
=|4-a+2i|=
(4-a)2+4
,|z1|=
13
.
(4-a)2+4
13

得a2-8a+7<0,1<a<7.
点评:本题考查复数的概念,复数乘除运算,复数的模,考查学生的运算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z1满足(1+i)z1=-1+5i,z2=a-2-i,(a∈R),若|z1-
.
z2
| < |z1|
,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1满足(1-i)z1=1+3i,z2=a-i(a∈R),其中i为虚数单位.
(1)求z1
(2)若z1是关于x的实系数方程x2-px+q=0的一个根,求实数p、q的值.
(3)若 z1-
.
z2
 | > 
2
  |z1|
,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)已知复数z1满足(1+i)z1=3+i,复数z0满足z0z1+
.
z0
=4

(1)求复数z0
(2)设z0是关于x的实系数方程x2-px+q=0的一个根,求p、q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县二模)已知复数z1满足(1+i)z1=1+3i,z2=1-ai(a∈R)且|z1-z2|<|z1|
(1)求复数z1
(2)求实数a的取值范围.

查看答案和解析>>

同步练习册答案