精英家教网 > 高中数学 > 题目详情
某校要从4名教师中选派3名参加省骨干教师3期培训,各期只派1名.由于工作上的原因,甲、乙两名老师不能参加第一期的培训,则不同选派方法有(  )种.
A、8B、12C、24D、48
考点:计数原理的应用
专题:排列组合
分析:第一步派教师第1培训的方法有C21 种,第二步再参加其余2期培训的方法有 A32 种,由分步计数原理求得结果.
解答: 解:派教师参加第1期培训的方法有C21 种,派教师参加其余2期培训的方法有 A32 种,
由分步计数原理可得不同的选派方式有 C21•A32=12种,
故选.B.
点评:本题主要考查排列与组合及分步计数原理,排列数公式、组合数公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若
A1A3
A1A2
(λ∈R),
A1A4
A1A2
(μ∈R),且
1
λ
+
1
μ
=2
,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,0)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是(  )
A、C可能是线段AB的中点
B、D可能是线段AB的中点
C、C,D可能同时在线段AB上
D、C,D不可能同时在线段AB的延长线上

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数 ①y=x+
1
x
(x≥2);②y=tanx+
1
tanx
;③y=x-3+
1
x-3
;④y=
x2+2
+
1
x2+2
.其中最小值为2的有(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,-3),B(2,3),直线x+4y-1=0过抛物线y=ax2的焦点,动点P在抛物线上,则△PAB面积的最小值是(  )
A、
3
4
B、
5
6
C、
4
5
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-ex,则f′(0)=(  )
A、0B、-1C、eD、1

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x3+x-2上点P0处的切线斜率为4,则点P0的一个坐标是(  )
A、(0,-2)
B、(1,1)
C、(-1,-4)
D、(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在区间D上的函数,任给x1,x2∈D,且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2
,则称函数f(x)为区间D上的严格凸函数.现给出下列命题:
①函数y=log2x与函数y=-x2在区间(0,+∞)上均为严格凸函数;
②函数y=2x与y=tanx在(-1,1)均不为严格凸函数;
③一定存在实数k,使得函数y=x+
k
x
在区间(-∞,0)上为严格凸函数.
其中正确的命题个数为(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+ax-lnx(a∈R).
(Ⅰ)若a=1,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;
(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切线有且仅有一条,且切点的横坐标恒为1.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市居民2009~2013年货币收入x与购买商品支出Y的统计资料如下表所示:
( 单 位:亿元)
年份 2009 2010 2011 2012 2013
货币收入x 40 42 46 47 50
购买商品支出Y 33 34 37 40 41
(Ⅰ)画出散点图,判断x与Y是否具有相关关系;
(Ⅱ)已知
b
=0.84,请写出Y对x的回归直线方程y=
b
x+
a
;并估计货币收入为52(亿元)时,购买商品支出大致为多少亿元?

查看答案和解析>>

同步练习册答案