精英家教网 > 高中数学 > 题目详情
解不等式:|3x+8|+
2
>0.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:利用绝对值不等式转化为一次不等式求解即可.
解答: 解:不等式:|3x+8|+
2
>0.因为
2
>0
,而|3x+8|≥0恒成立,
所以不等式对一切x∈R都成立.
不等式的解集为:R.
点评:本题考查绝对值不等式的解法,分析不等式的结构形式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln
1+x
1-x
,x1,x2∈(-1,1).
(1)求证:f(x1)+f(x2)=f(
x1+x2
1+x1x2
);
(2)若a,b∈(-1,1),且f(
a+b
1+ab
)=1,f(-b)=
1
2
,求f(a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3-bx+2,且f(-5)=17,则f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设有集合A={x|x2-[x]=2}和B={x||x|<2},求A∩B和A∪B(其中[x]表示不超过实数x之值的最大整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

判断直线y=
4
3
x-
50
3
与圆(x-2)2+y2=100的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为(2
2
,0),且椭圆Γ上一点M到其两焦点F1,F2的距离之和为4
3

(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆Γ交于不同两点A,B,且|AB|=3
2
.若点P(x0,2)满足|
PA
|=|
PB
|,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦点,椭圆C过点(-
3
,1)
且与抛物线y2=-8x有一个公共的焦点.
(1)求椭圆C方程;
(2)斜率为k的直线l过右焦点F2,且与椭圆交于A,B两点,求弦AB的长;
(3)P为直线x=3上的一点,在第(2)题的条件下,若△ABP为等边三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+ϕ)(A>0,ω>0,ϕ∈(0,π)),x∈[-4,0]的图象,图象的最高点为B(-1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧
DE

(1)求曲线段FGBC的函数表达式;
(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;
(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF上,一边在半径OD上,另外一个顶点P在圆弧
DE
上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果a2+b2=
1
2
c2,那么直线ax+by-c=0与圆x2+y2=1的位置关系是
 

查看答案和解析>>

同步练习册答案