精英家教网 > 高中数学 > 题目详情
13.如图甲是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议

(Ⅰ)是不改变车票价格,减少支出费用;建议
(Ⅱ)是不改变支出费用,提高车票价格.下面给出四个图象:在这些图象中,(1)反映了建议(Ⅰ),(3)反映了建议(Ⅱ)

分析 观察函数图象可知,函数的横坐标表示乘客量,纵坐标表示收支差额,根据题意得:(1)不改变车票价格,减少支出费用,则收支差额变大.

解答 解:∵建议(1)是不改变车票价格,减少支出费用;也就是y增大,车票价格不变,即平行于原图象,
∴图(1)反映了建议(Ⅰ),
∵建议(2)是不改变支出费用,提高车票价格,也就是图形增大倾斜度,提高价格,
∴图(3)反映了建议(Ⅱ).
故答案为(1),(3).

点评 此题主要考查了函数图象的性质,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程是做题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,抛物线C:x2=-2py(p>0)与直线y=kx+m(m<0)(其中m、p为常数)交于P、Q两点.
(1)当k=0时,求P、Q两点的坐标;
(2)试问y轴上是否存在点M,无论k怎么变化,总存在以原点为圆心的圆与直线MP、MQ都相切,若存在求出M的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若数列{an}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{({a}_{n}+1)({a}_{n+1}+1)}$,求数列{bn}的前项的和Tn
(3)是否存在自然数m,使得$\frac{m-2}{4}$<Tn<$\frac{m}{5}$对一切n∈N*恒成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题“?x∈R,|x|+x2?0”的否定是(  )
A.?x∈R,|x|+x2<0B.?x∈R,|x|+x2?0C.?x0∈R,|x|+x2<0D.?∈R,|x|+?0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.从甲同学家到乙同学家的中途有一个公园,甲、乙两家离公园入口都是2公里,甲从10点钟出发前往乙同学家,如图所示是甲同学从自己家出发到乙家经过的路程y(公里)和时间x(分钟)的关系.根据图象,回答下列问题:
(1)甲在公园休息了吗?若休息了,休息了多长时间?
(2)写出y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=|2-\frac{1}{x}|,(x>0)$.
(Ⅰ)是否存在实数a,b(0<a<b),使得函数y=f(x)的定义域、值域都是[a,b]?若存在,则求出a,b的值,若不存在,请说明理由;
(Ⅱ)若存在实数a,b(0<a<b),使得函数y=f(x)的定义域是[a,b],值域是[ma,mb](m>0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个函数中,在区间(0,+∞)上是减函数的是(  )
A.y=log3xB.y=3xC.y=x${\;}^{\frac{1}{2}}$D.y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a=$\int_1^e$(x+$\frac{1}{x}}$)dx,则a=$\frac{1}{2}{e}^{2}+\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在数列{an}中,a${\;}_{2}=\frac{3}{2},{a}_{3}=\frac{7}{3}$,且数列{nan+1}是等差数列,则an=$\frac{4n-5}{n}$.

查看答案和解析>>

同步练习册答案