精英家教网 > 高中数学 > 题目详情
8.为了推进国家“民生工程”,某市政府现提供一批经济适用房来保障居民住房.现有条件相同的甲、乙、丙、丁4套住房供A,B,C3人申请,且他们的申请是相互独立的.
(1)求A,B两人不申请同一套住房的概率;
(2)设3名申请人中申请甲套住房的人数为X,求X的分布列和数学期望.

分析 (1)设“A,B两人选择同一套住房”为事件N,先求出事件N的概率,再求A,B两人不选择同一套住房的概率.
(2)法一:随机变量ξ可能取的值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出ξ的分布列和Eξ.
法二:依题意得ξ~B(3,$\frac{1}{4}$),由此能求出ξ的分布列和Eξ.

解答 解:(1)设“A,B两人申请同一套住房”为事件N,P(N)=4×$\frac{1}{4}$×$\frac{1}{4}$=$\frac{1}{4}$,
所以A,B两人不申请同一套住房的概率是P=1-P(N)=$\frac{3}{4}$.
(2)法一、随机变量X可能取的值为0,1,2,3,那么
P(X=0)=C03($\frac{3}{4}$)3=$\frac{27}{64}$,
P(X=1)=${C}_{3}^{1}$×$\frac{1}{4}$×($\frac{3}{4}$)2=$\frac{27}{64}$,
P(X=2)=${C}_{3}^{2}$×($\frac{1}{4}$)2×$\frac{3}{4}$=$\frac{9}{64}$,
P(X=3)=${C}_{3}^{3}$×($\frac{1}{4}$)3=$\frac{1}{64}$,
所以X的分布列为

X0123
P$\frac{27}{64}$$\frac{27}{64}$$\frac{9}{64}$$\frac{1}{64}$
所以E(X)=0×$\frac{27}{64}$+1×$\frac{27}{64}$+2×$\frac{9}{64}$+3×$\frac{1}{64}$=$\frac{3}{4}$.
法二、依题意得X~B(3,$\frac{1}{4}$),
所以X的分布列为P(X=k)=${C}_{3}^{k}$×($\frac{1}{4}$)k×($\frac{3}{4}$)3-k=${C}_{3}^{k}$×$\frac{{3}^{3-k}}{64}$,k=0,1,2,3.即
X0123
P$\frac{27}{64}$$\frac{27}{64}$$\frac{9}{64}$$\frac{1}{64}$
所以E(X)=3×$\frac{1}{4}$=$\frac{3}{4}$.

点评 本题考查离散型随机变量的分布列和数学期望,是中档题.在历年高考中都是必考题型.解题时要认真审题,仔细解答,注意概率知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知一个三角形内有2016个点,且任意一个点都不在其他任何两点的连线上,则这些点(含三角形三个顶点)将该三角形分成互相没有重合部分的三角形区域有(  )
A.4033个B.4032个C.2017个D.2016个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,且过点$P(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$,动直线l:y=kx+m交椭圆C于不同的两点A,B,且$\overrightarrow{OA}•\overrightarrow{OB}=0$(O为坐标原点)
(1)求椭圆C的方程.
(2)讨论3m2-2k2是否为定值.若为定值,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在锐角△ABC中,角A,B所对的边长分别为a,b,若$2asinB=\sqrt{3}b$,则$cos({\frac{3π}{2}-A})$=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设点P(x,y)在不等式组$\left\{\begin{array}{l}x≥1\\ 2x-y≤0\\ x+y-6≤0\end{array}\right.$所表示的平面区域内,则z=x+2y的取值范围为[5,11].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1(作斜率为k的直线交双曲线右支于点P,且∠F1PF2为锐角,M为线段F1P的中点,过坐标原点O作OT⊥F1P于点T,且|OM|-|TM|=b-a,则k=(  )
A.$\frac{b}{a}$B.$\frac{a}{b}$C.$\frac{a}{\sqrt{{a}^{2}+{b}^{2}}}$D.$\frac{b}{\sqrt{{a}^{2}+{b}^{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.为稳定当前物价,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场商品的售价x元和销售量y件之间的一组数据如下表所示:
价格x8.599.51010.5
销售量y1211976
由散点图可知,销售量y与价格x之间有较好的线性相关关系,其线性回归方程是$\widehat{y}$=-3.2x+$\widehat{a}$,则$\hat a$=39.4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.
(1)若函数f(x)≥g(x),求x得取值范围;
(2)若不等式f(x)-g(x)≥m+1的解集为R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足$\left\{\begin{array}{l}x+y+3>0\\ x-2y+6>0\\ 3x-y-2<0\end{array}\right.$,则z=x-y的最小值为(  )
A.0B.-1C.-3D.-5

查看答案和解析>>

同步练习册答案