分析 由已知及正弦定理可得:2sinAsinB=$\sqrt{3}$sinB,结合sinB>0,可得sinA的值,利用诱导公式化简所求即可得解.
解答 解:∵$2asinB=\sqrt{3}b$,
∴由正弦定理可得:2sinAsinB=$\sqrt{3}$sinB,
∵B为锐角,sinB>0,
∴可得:sinA=$\frac{\sqrt{3}}{2}$,
∴$cos({\frac{3π}{2}-A})$=-sinA=$-\frac{{\sqrt{3}}}{2}$.
故答案为:$-\frac{{\sqrt{3}}}{2}$.
点评 本题主要考查了正弦定理,诱导公式在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{π}{12},0}]$ | B. | $({-\frac{π}{8},-\frac{π}{24}}]$ | C. | $[-\frac{π}{12},\frac{π}{8})$ | D. | $[{0,\frac{π}{12}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com