精英家教网 > 高中数学 > 题目详情
1.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点,D,E分别是椭圆C的上顶点和右顶点,且S${\;}_{△DE{F}_{2}}$=$\frac{\sqrt{3}}{2}$,离心率e=$\frac{1}{2}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)设经过F2的直线l与椭圆C相交于A,B两点,求$\frac{{|{{F_2}A}||{{F_2}B}|}}{{{S_{△OAB}}}}$的最小值.

分析 (Ⅰ)利用椭圆的离心率,三角形的面积,列出方程组,然后求椭圆C的方程;
(Ⅱ)设出直线方程,联立直线与椭圆方程的方程组,利用韦达定理以及三角形的面积公式,结合函数的单调性求解即可.

解答 解:(Ⅰ)依题意得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{1}{2}(a-c)b=\frac{\sqrt{3}}{2}}\end{array}\right.$,---------------------------------(3分)
解得$\left\{\begin{array}{l}{{a}^{2}=4}\\{{b}^{2}=3}\end{array}\right.$,故所求椭圆方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$----------------------------------(5分)
(Ⅱ)由(1)知F2(1,0),设A(x1,y1),B(x2,y2),AB的方程为x=ty+1,代入椭圆的方程,
整理得(3t2+4)y2+6ty-9=0,∴$\left\{\begin{array}{l}{{y}_{1}+{y}_{2}=-\frac{6t}{3{t}^{2}+4}}\\{{y}_{1}{y}_{2}=\frac{-9}{3{t}^{2}+4}}\end{array}\right.$,-----------------------(8分)
∵${S}_{△ABC}=\frac{1}{2}×1×|{y}_{1}-{y}_{2}|$,|AF2|=$\sqrt{1+{t}^{2}}|{y}_{1}|$,|BF2|=$\sqrt{1+{t}^{2}}|{y}_{2}|$,
$\frac{{|{{F_2}A}||{{F_2}B}|}}{{{S_{△OAB}}}}$=$\frac{2(1+{t}^{2})\frac{9}{3{t}^{2}+4}}{\sqrt{\frac{36{t}^{2}}{(3{t}^{2}+4)^{2}}+\frac{36}{3{t}^{2}+4}}}$=$\frac{3\sqrt{1+{t}^{2}}}{2}$$≥\frac{3}{2}$,-----------------------(11分)
当且仅当t=0时上式取等号.∴$\frac{{|{{F_2}A}||{{F_2}B}|}}{{{S_{△OAB}}}}$的最小值为:$\frac{3}{2}$.--------------------(12分)

点评 本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,函数的单调性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知复数z=i(1-2i)(i为虚数单位),则z的值为(  )
A.-2+iB.-2-iC.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90°的正角.已知双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),当其离心率$e∈[\sqrt{2},2]$时,对应双曲线的渐近线的夹角的取值范围为(  )
A.$[0,\frac{π}{6}]$B.$[\frac{π}{6},\frac{π}{3}]$C.$[\frac{π}{4},\frac{π}{3}]$D.$[\frac{π}{3},\frac{π}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,若$({\sqrt{3}b-c})cosA=acosC$,则$tan({A-\frac{π}{4}})$=$3-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在锐角△ABC中,角A,B所对的边长分别为a,b,若$2asinB=\sqrt{3}b$,则$cos({\frac{3π}{2}-A})$=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数y=sin(ωx-2)(ω>0)的最小正周期为$\frac{2π}{3}$,要得到y=sin(ωx-2)的图象,只要将函数y=sinωx的图象(  )
A.向左平移2个单位B.向右平移2个单位
C.向左平移$\frac{2}{3}$个单位D.向右平移$\frac{2}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1(作斜率为k的直线交双曲线右支于点P,且∠F1PF2为锐角,M为线段F1P的中点,过坐标原点O作OT⊥F1P于点T,且|OM|-|TM|=b-a,则k=(  )
A.$\frac{b}{a}$B.$\frac{a}{b}$C.$\frac{a}{\sqrt{{a}^{2}+{b}^{2}}}$D.$\frac{b}{\sqrt{{a}^{2}+{b}^{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知关于x的方程:${log_2}(x+3)-{log_{2^2}}{x^2}=a$在区间(3,4)内有解,则实数a的取值范围是(  )
A.$[{log_2}\frac{7}{4},+∞)$B.$({log_2}\frac{7}{4},+∞)$C.$({log_2}\frac{7}{4},1)$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别为F1,F2,右焦点F2与抛物线y2=4$\sqrt{34}$x的焦点相同,离心率为e=$\frac{\sqrt{34}}{5}$,若双曲线左支上有一点M到右焦点F2距离为18,N为MF2的中点,O为坐标原点,则|NO|等于(  )
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

同步练习册答案