精英家教网 > 高中数学 > 题目详情
11.已知复数z=i(1-2i)(i为虚数单位),则z的值为(  )
A.-2+iB.-2-iC.2+iD.2-i

分析 直接利用复数代数形式的乘法运算化简得答案.

解答 解:z=i(1-2i)=-2i2+i=2+i.
故选:C.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{sinπx}{{({x^2}+1)({x^2}-2x+2)}}$,x∈R.
(Ⅰ)请判断方程f(x)=0在区间[-2017,2017]上的根的个数,并说明理由;
(Ⅱ)判断f(x)的图象是否具有对称轴,如果有请写出一个对称轴方程,若不具有对称性,请说明理由;
(Ⅲ)求证:$\sum_{i=2}^n{\frac{{f(\frac{2i-1}{2})}}{{sin\frac{2i-1}{2}π}}}<\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设关于x的方程2x2-ax-2=0的两根分别为α、β(α<β),函数$f(x)=\frac{4x-a}{{{x^2}+1}}$
(1)证明f(x)在区间(α,β)上是增函数;
(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,直角梯形ABCD中,AD⊥DC,AD∥BC,BC=2CD=2AD=2,若将直角梯形绕BC边旋转一周,则所得几何体的表面积为(  )
A.3π+$\sqrt{2}$πB.3π+2$\sqrt{2}$πC.6π+2$\sqrt{2}$πD.6π+$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{{2}^{n-1}}$,Tn为数列{bn}的前n项和,求证Tn<6:.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ln(2-x)+ax在区间(0,1)内是增函数,则实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)求经过点P(2$\sqrt{2}$,-$\sqrt{3}$)和Q(-2$\sqrt{3}$,$\sqrt{6}$)的双曲线的标准方程;
(2)已知双曲线与椭圆$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{36}$=1有共同的焦点,且与椭圆相交,其中一个交点A的纵坐标为4,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长为a,b,c,其面积$S=\sqrt{p(p-a)(p-b)(p-c)}$,这里$p=\frac{1}{2}(a+b+c)$.已知在△ABC中,BC=6,AB=2AC,则△ABC面积的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点,D,E分别是椭圆C的上顶点和右顶点,且S${\;}_{△DE{F}_{2}}$=$\frac{\sqrt{3}}{2}$,离心率e=$\frac{1}{2}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)设经过F2的直线l与椭圆C相交于A,B两点,求$\frac{{|{{F_2}A}||{{F_2}B}|}}{{{S_{△OAB}}}}$的最小值.

查看答案和解析>>

同步练习册答案