精英家教网 > 高中数学 > 题目详情
3.(1)求经过点P(2$\sqrt{2}$,-$\sqrt{3}$)和Q(-2$\sqrt{3}$,$\sqrt{6}$)的双曲线的标准方程;
(2)已知双曲线与椭圆$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{36}$=1有共同的焦点,且与椭圆相交,其中一个交点A的纵坐标为4,求双曲线的方程.

分析 (1)由题意设双曲线的标准方程为nx2+my2=1(mn<0),代入已知点的坐标可得关于m,n的方程组,求解可得m,n的值,则双曲线方程可求;
(2)由椭圆方程求出焦点坐标,再由A的纵坐标求出A的坐标,设双曲线的标准方程为$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}=1$(a>0,b>0),列关于a,b的方程组,求出a,b得答案.

解答 解:(1)设双曲线的标准方程为nx2+my2=1(mn<0),
又双曲线经过点P(2$\sqrt{2}$,-$\sqrt{3}$)和Q(-2$\sqrt{3}$,$\sqrt{6}$),
∴$\left\{\begin{array}{l}{8n+3m=1}\\{12n+6m=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=-\frac{1}{3}}\\{n=\frac{1}{4}}\end{array}\right.$.
∴所求的双曲线的标准方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$;
(2)∵椭圆$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{36}$=1的焦点为(0,-3)、(0,3),
把y=4代入椭圆方程可得x=$±\sqrt{15}$.
∴A点的坐标为($±\sqrt{15}$,4),
设双曲线的标准方程为$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}=1$(a>0,b>0),
则$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=9}\\{\frac{16}{{a}^{2}}-\frac{15}{{b}^{2}}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}^{2}=4}\\{{b}^{2}=5}\end{array}\right.$.
∴所求的双曲线的标准方程为$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{5}=1$.

点评 本题考查椭圆的简单性质,考查了双曲线标准方程的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在直角坐标平面上,O为原点,M为动点,$|\overrightarrow{OM}|=\sqrt{5},\overrightarrow{ON}=\frac{{2\sqrt{5}}}{5}\overrightarrow{OM}$.过点M作MM1⊥y轴于M1,过N作NN1⊥x轴于点N1,$\overrightarrow{OT}=\overrightarrow{{M_1}M}+\overrightarrow{{N_1}N}$.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线l交曲线C于两个不同的点P、Q(点Q在A与P之间).
(1)求曲线C的方程;  
(2)问是否存在直线l,使得|BP|=|BQ|;若存在,求出直线l方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}是等比数列,a1=1,a4=8,则公比q等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=i(1-2i)(i为虚数单位),则z的值为(  )
A.-2+iB.-2-iC.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一个三角形内有2016个点,且任意一个点都不在其他任何两点的连线上,则这些点(含三角形三个顶点)将该三角形分成互相没有重合部分的三角形区域有(  )
A.4033个B.4032个C.2017个D.2016个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知关于x的不等式ax2-3x+2≤0的解集为{x|1≤x≤b}.
(Ⅰ)求实数a,b的值;
(Ⅱ)解关于x的不等式(ax-b)(x-c)>0(c为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$f(x)=\frac{xln|x|}{|x|}$的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90°的正角.已知双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),当其离心率$e∈[\sqrt{2},2]$时,对应双曲线的渐近线的夹角的取值范围为(  )
A.$[0,\frac{π}{6}]$B.$[\frac{π}{6},\frac{π}{3}]$C.$[\frac{π}{4},\frac{π}{3}]$D.$[\frac{π}{3},\frac{π}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1(作斜率为k的直线交双曲线右支于点P,且∠F1PF2为锐角,M为线段F1P的中点,过坐标原点O作OT⊥F1P于点T,且|OM|-|TM|=b-a,则k=(  )
A.$\frac{b}{a}$B.$\frac{a}{b}$C.$\frac{a}{\sqrt{{a}^{2}+{b}^{2}}}$D.$\frac{b}{\sqrt{{a}^{2}+{b}^{2}}}$

查看答案和解析>>

同步练习册答案