精英家教网 > 高中数学 > 题目详情
2.设关于x的方程2x2-ax-2=0的两根分别为α、β(α<β),函数$f(x)=\frac{4x-a}{{{x^2}+1}}$
(1)证明f(x)在区间(α,β)上是增函数;
(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.

分析 (1)设Φ(x)=2x2-ax-2,则当α<x<β时,Φ(x)<0,利用f′(x)的符号进行判定函数的单调性即可;
(2)运用方程的根,求得f(α)•f(β)=$\frac{-64}{{a}^{2}+16-{a}^{2}}$=-4<0,可知函数f(x)在[α,β]上最大值f(β)>0,最小值f(α)<0,而f(α)•f(β)=-4,则当f(β)=-f(α)=2时,f(β)-f(α)取最小值,从而得到结论.

解答 解:(1)证明:设Φ(x)=2x2-ax-2,则当α<x<β时,Φ(x)<0.
f′(x)=$\frac{4({x}^{2}+1)-2x(4x-a)}{(1+{x}^{2})^{2}}$=-$\frac{2(2{x}^{2}-ax-2)}{({x}^{2}+1)^{2}}$>0,
∴函数f(x)在(α,β)上是增函数.
(2)由关于x的方程2x2-ax-2=0的两根分别为α、β(α<β),
可得α=$\frac{a-\sqrt{{a}^{2}+16}}{4}$,β=$\frac{a+\sqrt{{a}^{2}+16}}{4}$,
f(α)=$\frac{4α-a}{{α}^{2}+1}$=$\frac{-8}{\sqrt{{a}^{2}+16}-a}$,f(β)=$\frac{8}{\sqrt{{a}^{2}+16}+a}$,
即有f(α)•f(β)=$\frac{-64}{{a}^{2}+16-{a}^{2}}$=-4<0,
函数f(x)在[α,β]上最大值f(β)>0,最小值f(α)<0,
∴当且仅当f(β)=-f(α)=2时,
f(β)-f(α)=|f(β)|+|f(α)|取最小值4,
此时a=0,f(β)=2.
当a=0时,f(x)在区间[α,β]上的最大值与最小值之差最小.

点评 本题主要考查了函数与方程的综合运用,以及函数单调性的判定和函数最值等有关知识,同时考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若集合A={x||2x-1|<3},$B=\left\{{\left.x\right|\frac{2x+1}{x-3}<0}\right\}$,则A∩∁RB=(  )
A.$\left\{{\left.x\right|-1<x<\frac{1}{2}或2<x<3}\right\}$B.$(-\frac{1}{2},2)$
C.$\left\{{\left.x\right|-1<x<-\frac{1}{2}}\right\}$D.$(-1,-\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标平面上,O为原点,M为动点,$|\overrightarrow{OM}|=\sqrt{5},\overrightarrow{ON}=\frac{{2\sqrt{5}}}{5}\overrightarrow{OM}$.过点M作MM1⊥y轴于M1,过N作NN1⊥x轴于点N1,$\overrightarrow{OT}=\overrightarrow{{M_1}M}+\overrightarrow{{N_1}N}$.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线l交曲线C于两个不同的点P、Q(点Q在A与P之间).
(1)求曲线C的方程;  
(2)问是否存在直线l,使得|BP|=|BQ|;若存在,求出直线l方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果函数$f(x)={log_3}\frac{3+x}{a-x}$是奇函数,则f(x)的定义域是(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知z∈C,i是虚数单位,$\overline{z}$是z的共轭复数,则下列说法与“z为纯虚数”不等价的是(  )
A.z2<0B.$z+\overline{z}=0$
C.Rez=0且 Imz≠0D.z=|z|i或z=-|z|i,且|z|≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an}中,前n项和为Sn,若a2+a8=10,则S9=(  )
A.36B.40C.42D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}是等比数列,a1=1,a4=8,则公比q等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=i(1-2i)(i为虚数单位),则z的值为(  )
A.-2+iB.-2-iC.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90°的正角.已知双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),当其离心率$e∈[\sqrt{2},2]$时,对应双曲线的渐近线的夹角的取值范围为(  )
A.$[0,\frac{π}{6}]$B.$[\frac{π}{6},\frac{π}{3}]$C.$[\frac{π}{4},\frac{π}{3}]$D.$[\frac{π}{3},\frac{π}{2}]$

查看答案和解析>>

同步练习册答案