精英家教网 > 高中数学 > 题目详情
17.已知z∈C,i是虚数单位,$\overline{z}$是z的共轭复数,则下列说法与“z为纯虚数”不等价的是(  )
A.z2<0B.$z+\overline{z}=0$
C.Rez=0且 Imz≠0D.z=|z|i或z=-|z|i,且|z|≠0

分析 由复数的基本概念逐一核对四个命题得答案.

解答 解:若z为纯虚数,则z=bi(b∈R且b≠0),则z2=-b2<0,反之,若z2<0,则z为纯虚数,∴z2<0与“z为纯虚数”等价;
当z为实数时,有$z+\overline{z}=0$,∴由$z+\overline{z}=0$与“z为纯虚数”不等价;
Rez=0且 Imz≠0与“z为纯虚数”等价;
令z=a+bi(a,b∈R),则|z|=$\sqrt{{a}^{2}+{b}^{2}}$,由z=|z|i或z=-|z|i,得a=0,$\sqrt{{a}^{2}+{b}^{2}}=±b$,
又|z|≠0,∴b≠0.
即z=|z|i或z=-|z|i,且|z|≠0与“z为纯虚数”等价.
故选:B.

点评 本题考查命题的真假判断与应用,考查复数的基本概念,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2 015)+f(2 016)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l:x-y=1与圆M:x2+y2-2x+2y=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若${(3{x^2}-\frac{1}{{2{x^3}}})^n}$的展开式中含有常数项,则当正整数n取得最小值时,常数项的值为$\frac{135}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式组$\left\{\begin{array}{l}x+a+1>0\\ ax>0\end{array}\right.$(a≠0)的解集为∅,则实数a的取值范围是{a|a=0,或a≤-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设关于x的方程2x2-ax-2=0的两根分别为α、β(α<β),函数$f(x)=\frac{4x-a}{{{x^2}+1}}$
(1)证明f(x)在区间(α,β)上是增函数;
(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在锐角△ABC中,AB=3,AC=4,S△ABC=3,则BC=$\sqrt{25-12\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{{2}^{n-1}}$,Tn为数列{bn}的前n项和,求证Tn<6:.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=2cos({ωx+φ})-1({ω>0,|φ|<\frac{π}{8}})$,其图象与直线y=1相邻两个交点的距离为$\frac{4}{3}π$,若f(x)>0对$x∈({-\frac{π}{8},\frac{π}{4}})$恒成立,则φ的取值范围是(  )
A.$[{-\frac{π}{12},0}]$B.$({-\frac{π}{8},-\frac{π}{24}}]$C.$[-\frac{π}{12},\frac{π}{8})$D.$[{0,\frac{π}{12}}]$

查看答案和解析>>

同步练习册答案