分析 由已知利用三角形面积公式可求sinA,利用同角三角函数基本关系式可求cosA,进而利用余弦定理即可计算得解BC的值.
解答 解:∵AB=3,AC=4,S△ABC=3=$\frac{1}{2}$AB•AC•sinA=$\frac{1}{2}×3×4×$sinA,
∴解得:sinA=$\frac{1}{2}$,
∵A为锐角,
∴cosA=$\frac{\sqrt{3}}{2}$,
∴由余弦定理可得:BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•AC•cosA}$=$\sqrt{9+16-2×3×4×\frac{\sqrt{3}}{2}}$=$\sqrt{25-12\sqrt{3}}$.
故答案为:$\sqrt{25-12\sqrt{3}}$.
点评 本题主要考查了三角形面积公式,同角三角函数基本关系式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,x02-x0<0 | B. | ?x0∈R,x02-x0≤0 | C. | ?x∈R,x2-x<0 | D. | ?x∈R,x2-x≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±x | B. | y=±2x | C. | y=±3x | D. | y=±4x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | z2<0 | B. | $z+\overline{z}=0$ | ||
| C. | Rez=0且 Imz≠0 | D. | z=|z|i或z=-|z|i,且|z|≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4033个 | B. | 4032个 | C. | 2017个 | D. | 2016个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com