精英家教网 > 高中数学 > 题目详情
9.在锐角△ABC中,AB=3,AC=4,S△ABC=3,则BC=$\sqrt{25-12\sqrt{3}}$.

分析 由已知利用三角形面积公式可求sinA,利用同角三角函数基本关系式可求cosA,进而利用余弦定理即可计算得解BC的值.

解答 解:∵AB=3,AC=4,S△ABC=3=$\frac{1}{2}$AB•AC•sinA=$\frac{1}{2}×3×4×$sinA,
∴解得:sinA=$\frac{1}{2}$,
∵A为锐角,
∴cosA=$\frac{\sqrt{3}}{2}$,
∴由余弦定理可得:BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•AC•cosA}$=$\sqrt{9+16-2×3×4×\frac{\sqrt{3}}{2}}$=$\sqrt{25-12\sqrt{3}}$.
故答案为:$\sqrt{25-12\sqrt{3}}$.

点评 本题主要考查了三角形面积公式,同角三角函数基本关系式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.命题p:“?x0∈R,x02-x0>0”,则¬p是(  )
A.?x0∈R,x02-x0<0B.?x0∈R,x02-x0≤0C.?x∈R,x2-x<0D.?x∈R,x2-x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点为F,第二象限的点M在双曲线C的渐近线上,且|OM|=a,若直线|MF|的斜率为$\frac{b}{a}$,则双曲线C的渐近线方程为(  )
A.y=±xB.y=±2xC.y=±3xD.y=±4x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知z∈C,i是虚数单位,$\overline{z}$是z的共轭复数,则下列说法与“z为纯虚数”不等价的是(  )
A.z2<0B.$z+\overline{z}=0$
C.Rez=0且 Imz≠0D.z=|z|i或z=-|z|i,且|z|≠0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}中,a1=1,an=2an-1+2n(n≥2),则an=(2n-1)•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}是等比数列,a1=1,a4=8,则公比q等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn,且an=$\frac{{S}_{n}+n}{2}$(n∈N*).
(Ⅰ)若数列{an+t}是等比数列,求t的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)记bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一个三角形内有2016个点,且任意一个点都不在其他任何两点的连线上,则这些点(含三角形三个顶点)将该三角形分成互相没有重合部分的三角形区域有(  )
A.4033个B.4032个C.2017个D.2016个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,且过点$P(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$,动直线l:y=kx+m交椭圆C于不同的两点A,B,且$\overrightarrow{OA}•\overrightarrow{OB}=0$(O为坐标原点)
(1)求椭圆C的方程.
(2)讨论3m2-2k2是否为定值.若为定值,求出该定值,若不是,请说明理由.

查看答案和解析>>

同步练习册答案