| A. | $[{-\frac{π}{12},0}]$ | B. | $({-\frac{π}{8},-\frac{π}{24}}]$ | C. | $[-\frac{π}{12},\frac{π}{8})$ | D. | $[{0,\frac{π}{12}}]$ |
分析 利用余弦函数的周期性求得ω,结合题意求得cos($\frac{3}{2}$x+φ)>$\frac{1}{2}$,结合$\frac{3}{2}$x+φ∈(-$\frac{3π}{16}$+φ,$\frac{3π}{8}$+φ),可得-$\frac{π}{3}$≤-$\frac{3π}{16}$+φ,且$\frac{3π}{8}$+φ≤$\frac{π}{3}$,由此求得φ的取值范围,综合得出结论.
解答 解:令f(x)=1,求得cos(ωx+φ)=1,
∵函数$f(x)=2cos({ωx+φ})-1({ω>0,|φ|<\frac{π}{8}})$,其图象与直线y=1相邻两个交点的距离为$\frac{4}{3}π$,
故函数f(x)的最下正周期为$\frac{2π}{ω}$=$\frac{4π}{3}$,∴ω=$\frac{3}{2}$,f(x)=2cos($\frac{3}{2}$x+φ).
若f(x)>0对$x∈({-\frac{π}{8},\frac{π}{4}})$恒成立,即cos($\frac{3}{2}$x+φ)>$\frac{1}{2}$.
又当x∈(-$\frac{π}{8}$,$\frac{π}{4}$)时,$\frac{3}{2}$x+φ∈(-$\frac{3π}{16}$+φ,$\frac{3π}{8}$+φ),
∴-$\frac{π}{3}$≤-$\frac{3π}{16}$+φ,且$\frac{3π}{8}$+φ≤$\frac{π}{3}$,∴-$\frac{7π}{48}$≤φ≤-$\frac{π}{24}$.
综合可得,-$\frac{π}{8}$<φ≤-$\frac{π}{24}$,
故选:B.
点评 本题主要考查余弦函数的图象和性质,函数的恒成立问题,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | z2<0 | B. | $z+\overline{z}=0$ | ||
| C. | Rez=0且 Imz≠0 | D. | z=|z|i或z=-|z|i,且|z|≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4033个 | B. | 4032个 | C. | 2017个 | D. | 2016个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[0,\frac{π}{6}]$ | B. | $[\frac{π}{6},\frac{π}{3}]$ | C. | $[\frac{π}{4},\frac{π}{3}]$ | D. | $[\frac{π}{3},\frac{π}{2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com