精英家教网 > 高中数学 > 题目详情
10.已知x,y∈[-$\frac{π}{4}$,$\frac{π}{4}$](a∈R),且x3+sinx-2a=0,4y3+sinycosy+a=0,则cos(x+2y)的值为1.

分析 设f(u)=u3+sinu.根据题设等式可知f(x)=2a,f(2y)=-2a,进而根据函数的奇偶性,求得f(x)=-f(2y)=f(-2y).进而推断出x+2y=0.进而求得cos(x+2y)=1.

解答 解:设f(u)=u3+sinu,可得f(x)=2a,由式得f(2y)=-2a.
因为f(u)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上是单调奇函数,
∴f(x)=-f(2y)=f(-2y),∴x=-2y,即x+2y=0,∴cos(x+2y)=1,
故答案为:1.

点评 本题主要考查了利用函数思想解决实际问题.考查了学生运用函数的思想,转化和化归的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若四边形ABCD是菱形,则在向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CD}$,$\overrightarrow{DA}$,$\overrightarrow{DC}$,$\overrightarrow{AD}$中,相等的有2对.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校为了响应《中共中央国务院关于加强青少年体育增强青少年体质的意见》精神,落实“生命-和谐”教育理念和阳光体育行动的现代健康理念,学校特组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了8次测试,且每次测试之间是相互独立的.成绩如下:(单位:个/分钟)
8081937288758384
8293708477877885
(1)用茎叶图表示这两组数据;
(2)从统计学的角度考虑,你认为选派哪位学生参加比赛合适,请说明理由;
(3)分别估计该班对甲乙两同学的成绩高于79个/分钟的概率
(参考数据:22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32=344)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若α、β均为锐角,且$cosα=\frac{1}{17}$,$cos(α+β)=-\frac{47}{51}$,则cosβ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-2kx+k+1.
(1)若f(x)在[-2,3)上是单调函数,求实数k的取值范围;
(2)若函数f(x)在[1,2]上有最小值-5,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知函数f(x)=2(m+1)x2+4mx+2m-1.
(1)如果函数f(x)的一个零点为0,求m的值;
(2)当函数f(x)有两个零点时,求m的取值范围;
(3)当函数f(x)有两个零点,且其中一个大于1,一个小于1时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求满足下列条件的实数x的取值范围:
(1)2x>8;         
(2)3x<$\frac{1}{27}$;
(3)($\frac{1}{2}$)x>$\sqrt{2}$;   
(4)5x<0.2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆C关于y轴对称,经过点(1,0)且被x轴分两段,弧长比为1:2,则圆C的方程为x2+(y±$\frac{\sqrt{3}}{3}$)2=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=$\frac{2}{3}$,an+1=$\frac{n}{n+2}$an,求通项公式an

查看答案和解析>>

同步练习册答案