精英家教网 > 高中数学 > 题目详情
15.己知函数f(x)=2(m+1)x2+4mx+2m-1.
(1)如果函数f(x)的一个零点为0,求m的值;
(2)当函数f(x)有两个零点时,求m的取值范围;
(3)当函数f(x)有两个零点,且其中一个大于1,一个小于1时,求m的取值范围.

分析 由条件利用一元二次方程根的分布与系数的关系,二次函数的性质,求得m的范围.

解答 解:对于函数f(x)=2(m+1)x2+4mx+2m-1,
(1)如果函数f(x)的一个零点为0,即f(0)=2m-1=0,求得m=$\frac{1}{2}$;
(2)当函数f(x)有两个零点时,△=(4m)2-8(m+1)(2m-1)>0,求得m<1;
(3)当函数f(x)有两个零点,且其中一个大于1,一个小于1时,则有f(1)=8m+1<0,
求得m<-$\frac{1}{8}$.

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知y=f(2x)的定义域为[-1,1],则y=f(log2x)的定义域是[$\sqrt{2}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}=5,则\frac{a}{{{a^2}+1}}$=$\frac{1}{23}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=1,\overrightarrow a•\overrightarrow b=0$,若向量$\overrightarrow c$满足$|{\vec c-\vec a-\vec b}|=1$,则$|{\overrightarrow c}|$的取值范围是(  )
A.[$\sqrt{2}$-1,$\sqrt{2}$+1]B.[$\sqrt{2}$-1,$\sqrt{2}$+2]C.[1,$\sqrt{2}$+1]D.[1,$\sqrt{2}$+2]1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x,y∈[-$\frac{π}{4}$,$\frac{π}{4}$](a∈R),且x3+sinx-2a=0,4y3+sinycosy+a=0,则cos(x+2y)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$.有下列三个命题:
①若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$;
②若$\overrightarrow{a}$与$\overrightarrow{b}$-$\overrightarrow{c}$都是非零向量且“$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$”则“$\overrightarrow{a}$⊥($\overrightarrow{b}$-$\overrightarrow{c}$)”;
③非零向量$\overrightarrow{a}$和$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为60°;
其中真命题的序号为②.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\frac{2sinx-1}{sinx+2}$的值域为[-3,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.a,b均为正数,则a+b+$\frac{1}{ab}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=xex+a在R上取得最小值1-$\frac{1}{e}$,则函数g(x)=$\frac{f(x)}{{e}^{x}}$在区间(-∞,0)上一定(  )
A.有最小值B.有最大值C.是减函数D.是增函数

查看答案和解析>>

同步练习册答案