精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2+
1
a
-
1
a2x
,实数a≠0,若不等式|a2 f(x)|≤2x,x>1恒成立,求a的值.
考点:函数的最值及其几何意义
专题:不等式的解法及应用
分析:先将f(x)代入化简,利用绝对值的几何意义去绝对值符号,转化恒成立问题处理
解答: 解:将f(x)=2+
1
a
-
1
a2x
代入得 a2f(x)=2a2+a-
1
x

则原不等式为|2a2+a-
1
x
|≤2x(x>1)恒成立,
由绝对值的几何意义得
1
x
-2x≤2a2+a≤
1
x
+2x,
当x>1时,(
1
x
-2x)′=-
1
x2
-2<0,单调递减,x=1时取得最大值,则
1
x
-2x<-1,
1
x
+2x)′=-
1
x2
+2=
2x2-1
x2
>0,单调递增,x=1时取得最小值,则
1
x
+2x>3,
则-1≤2a2+a≤3
解之,得-
3
2
≤a≤1.
点评:恒成立问题转化为求最值,要利用导数,不可使用基本不等式,因为不满足使用条件“取相等“,再综合不等式解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

学校要从高一300人,高二200人,高三100人中,分层抽样,抽调12人去参加环保志愿者,则高三应参加的人数为(  )人.
A、8B、6C、4D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数z和
2i
2-i
表示的点关于虚轴对称,则复数z=(  )
A、
2
5
+
4
5
i
B、
2
5
-
4
5
i
C、-
2
5
+
4
5
i
D、-
2
5
-
4
5
i

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=cos120°+isin120°,则z3=(  )
A、
1
2
+
3
2
i
B、-
1
2
-
3
2
i
C、
1
2
-
3
2
i
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(-4)<f(1),则(  )
A、a>0,4a-b=0
B、a<0,4a-b=0
C、a>0,2a-b=0
D、a<0,2a-b=0

查看答案和解析>>

科目:高中数学 来源: 题型:

某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO2的年排放量约为9.3万吨,
(Ⅰ)按原计划,“十二五”期间该城市共排放SO2约多少万吨?
(Ⅱ)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO2的年排放量每年比上一年减少的百分率为p,为使2020年这一年的SO2年排放量控制在6万吨以内,求p的取值范围.
(参考数据
8
2
3
≈0.9505,
9
2
3
≈0.9559).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(0,-1),向量
b
=(cosx,2cos2
π
3
-
x
2
)),其中0<x<
3
,试求|
a
+
b
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第20组抽取的号码为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
f(4-x)
2-x
,x>-2
,x≤-2
在[2,+∞)上为增函数,且f(0)=0,则f(x)的最小值是(  )
A、f(2)B、f(0)
C、f(-2)D、f(4)

查看答案和解析>>

同步练习册答案