精英家教网 > 高中数学 > 题目详情
14.函数y=ax3+bx2取得极大值或极小值时x的值分别为:0和$\frac{1}{3}$,则$\frac{a}{b}$=-2.

分析 由函数极值的性质可知,极值点处的导数为零,且左右两侧导数异号,据此可以列出关于a,b的方程(组),再进行判断.

解答 解:设f(x)=ax3+bx2(a≠0),
则f′(x)=3ax2+2bx,
由已知得 $\left\{\begin{array}{l}{f′(0)=0}\\{f′(\frac{1}{3})=0}\end{array}\right.$,
即$\frac{1}{3}$a+$\frac{2}{3}$b=0,
即a=-2b,
∴$\frac{a}{b}$=-2,
故答案为:-2.

点评 本题考查了导数和函数极值的关系,关键是求导,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.圆x2+y2-2x+4y-4=0上到直线x+y=8的距离最长的点的坐标为(1-$\frac{3}{2}$$\sqrt{2}$,-2-$\frac{3}{2}$$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知各项为正的数列{an}中,前n项和为Sn,且Sn=$\frac{{a}_{n}({a}_{n}+1)}{2}$.
(Ⅰ)证明数列{an}是等差数列,并求出数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{(2{a}_{n}+1)(2{a}_{n}-1)}$,数{bn}的前n项和为Tn,求使不等式Tn>$\frac{k}{57}$对-切n∈N*都成立的最大正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=4x-a•2x+1(-1≤x≤2)的最小值为g(a).
(1)求g(2)的值;
(2)求g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知不等式|ax+2|<6的解集是{x|-1<x<2},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=kx-1与椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{a}=1$相切,则k,a的取值范围分别是(  )
A.a∈(0,1),k∈(-$\frac{1}{2}$,$\frac{1}{2}$)B.a∈(0,1],k∈(-$\frac{1}{2}$,$\frac{1}{2}$)
C.a∈(0,1),k∈(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$)D.a∈(0,1),k∈(-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x2+|x-a|-1,x∈R.
(Ⅰ)当a=0时,判断函数f(x)的奇偶性;
(Ⅱ)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x=1是f(x)=2x+$\frac{b}{x}$+lnx的一个极值点.
(1)求b的值,并指出x=1是极大值点还是极小值点;
(2)设g(x)=f(x)-$\frac{3}{x}$($\frac{1}{e}$≤x≤e2),问:过点(2,5)可作几条直线与曲线y=g(x)相切?说明之.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知4f(x)-5f($\frac{1}{x}$)=2x,求f(x).

查看答案和解析>>

同步练习册答案