精英家教网 > 高中数学 > 题目详情
(1)解关于x的不等式ax2-(a+1)x+1<0.
(2)若对于a∈[2,3],不等式ax2-(a+1)x+1<0恒成立,求x的取值范围.
分析:(1)当a=0时,求出不等式的解集,当a不为0时,分四种情况考虑:当a<0时;当a=1时;当0<a<1时;当a>1时,分别求出解集即可;
(2)原不等式等价于a(x2-x)-x+1<0对a∈[2,3]恒成立,将a=2,3代入不等式,即可求出x的范围.
解答:解:(1)当a=0时,得到x>1;
当a≠0时,变形得:(ax-1)(x-1)<0,
分四种情况考虑:当a<0时,解得:
1
a
<x<1;
当a=1时,x∈∅;
当0<a<1时,解得:1<x<
1
a

当a>1时,解得:
1
a
<x<1;

(2)原不等式等价于a(x2-x)-x+1<0对a∈[2,3]恒成立,
所以
2(x2-x)-x+1<0
3(x2-x)-x+1<0

解得:
1
2
<x<1.
点评:此题考查了一元二次不等式的解法,利用了分类讨论的思想,是一道基本题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对a、b∈R,记max{a,b}=
a,a≥b
b,a<b
,函数f(x)=max{|x+1|,|2x+5|}(x∈R).
(1)求f(0),f(-3);
(2)作出f(x)的图象,并写出f(x)的单调区间;
(3)若关于x的方程f(x)=m有且仅有两个不等的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程8sin(x+
π
3
)cosx-2
3
-a=0在开区间(-
π
4
π
4
)
上.
(1)若方程有解,求实数a的取值范围.
(2)若方程有两个不等实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-3x+a=0有两不等实根;命题q:关于x的不等式x2+ax+a>0的解集为R.
(1)若p为真命题且q为假命题,试求a的取值范围;
(2)若“p或q”为真,“p且q”为假,则a的取值范围又是怎样的?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-2x-3<0解集为A,不等式x2+x-6<0的解集为B,
(1)求A∩B;
(2)若关于x的不等式x2+ax+b<0的解集为C,其A∩B⊆C,试写出实数a,b应满足的不等关系,并在给定坐标系中画出该不等关系所表示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程|x2-1|=a有三个不等的实数解,则实数a的值是
1
1

查看答案和解析>>

同步练习册答案