精英家教网 > 高中数学 > 题目详情
(本题满分10分)
如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.⑴证明:平面SBD⊥平面SAC;⑵证明:直线MN//平面SBC.
证明:⑴因为ABCD是菱形,所以BD⊥AC.----1分
因SA⊥底面ABCD,所以BD⊥SA.----------3分
因SA与AC交于点A,所以BD⊥面SAC.----4分
因BD面SBD,所以面SBD⊥面SAC;------5分
⑵取SB的中上E,连结ME、CE,
因M为SA中点,所以ME//AB且ME=AB.
又ABCD是菱形,N为CD中点,
所以CN//AB且CN=,---------8分
所以CN//EM且CN=EM,
所以四边形CNME是平行四边形,所以MN//CE,
又MN面SBC,CE面SBC,所以MN//面SBC.------------------10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E—DF—C的余弦值;
(III)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面为平行四边形的四棱锥中, 平面,点的中点.
(1)求证:
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在直三棱柱
点D在
(1)证明:无论为任何正数,均有
(2)当为何值时,二面角.           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图, 是边长为的正方形,平面与平面所成角为.
(Ⅰ) 求二面角的余弦值;
(Ⅱ) 设是线段上的一个动点,问当的值为多少时,可使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直三棱柱中,若,则异面直线
所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,正方体的棱长为
的中点(1)求证://平面;(2)求点到平面的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图1,正四棱锥相邻两侧面形成的二面角为θ,则θ的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知的矩形,沿对角线折起,使得面,则异面直线所成角的余弦值为        

查看答案和解析>>

同步练习册答案