精英家教网 > 高中数学 > 题目详情

已知集合,集合,其中,设全集I=R,欲使,求实数a的取值范围.

答案:略
解析:

解:令t=sin x

,∴

.对称轴是t=a.当时,当时,.当t=a时,

.要使

需要

1ap 时,同理可求得

综上所述,


练习册系列答案
相关习题

科目:高中数学 来源:2007年普通高等学校招生全国统一考试、理科数学(北京卷) 题型:044

已知集合A={a1,a2,…ax}(k≥2),其中,由中的元素构成两个相应的集合:.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的,总有,则称集合A具有性质P.

(1)

检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;

(2)

对任何具有性质P的集合A,证明:

(3)

判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:广东省梅山县东山中学2012届高三第二次月考数学理科试题 题型:044

已知集合A={a1,a2,…,ak}(k≥2),其中aiZ(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和m.若对于任意的a∈A,总有,则称集合A具有性质P.

(Ⅰ)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P,并对其中具有性质P的集合,写出相应的集合S和T;

(Ⅱ)对任何具有性质P的集合A,证明:

(Ⅲ)判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2014届北京市高一第一学期期末考试数学 题型:解答题

(本小题满分14分)

已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.

(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;

    ①

.

(Ⅱ)若集合是集合的一个元基底,证明:

(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.


 

查看答案和解析>>

科目:高中数学 来源:2012届北京市海淀区高三上学期期末考试理科数学 题型:解答题

(本小题满分14分)

已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.

(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;

    ①

.

(Ⅱ)若集合是集合的一个元基底,证明:

(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.


 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.

(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;

    ①

.

(Ⅱ)若集合是集合的一个元基底,证明:

(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.

查看答案和解析>>

同步练习册答案