从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.
(1)求第一次试验恰摸到一个红球和一个白球概率;
(2)记试验次数为
,求
的分布列及数学期望
.
(1)
;(2)
的分布列为
|
|
1 |
2 |
3 |
4 |
|
|
|
|
|
|
![]()
【解析】
试题分析:(1)由题意知,袋子中共有8个球,记“第一次试验恰摸到一个红球和一个白球”为事件A,则根据古典概型计算公式,得
.
(2)由题意知,每次试验中不放回地摸出两个球,直到摸出的球中有红球,因为袋中只有两个红球,所以最多需要进行四次试验,第一次试验的结果可能有“一个红球一个白球”或“两个红球”,第二次试验要在第一次试验没有出红球情况下进行,则袋中剩下4个白球和2个红球,结果可能为“一个红球一个白球”或“两个红球”,同理第三次试验要在前两次没有出现红球下进行,则袋中剩下2个白球和2个红球,结果能为“一个红球一个白球”或“两个红球”,第四次试验要在前三次试验没有出现红球下进行,则袋中只剩下2个红球,结果为“两个红球”,所以
的值为1、2、3、4,根据古典概型的计算公式,得
,
,
,
,从而可列出
的分布列,并求出其数学期望
.
试题解析:(1)![]()
(2)由题意可知
的值分别为1、2、3、4,则
,
,
,![]()
所以
的分布列为
![]()
的数学期望
.
考点:1.古典概率;2.随机变量的分布列、数学期望.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2014届浙江省高二(2-6班)下期中考试数学卷(解析版) 题型:解答题
从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.
(Ⅰ)求第一次试验恰摸到一个红球和一个白球概率;
(Ⅱ)记试验次数为
,求
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省温州市高三第一次适应性测试理科数学试卷(解析版) 题型:解答题
(本题满分14分)
从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.
(Ⅰ)求第一次试验恰摸到一个红球和一个白球概率;
(Ⅱ)记试验次数为
,求
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com