其中第(1)(2)问文理科学生都要做,第(3)问按题目要求分文理来做。
已知
为坐标原点,向量
,![]()
点
是直线
上的一点,且
.
求点
的坐标(用
表示);
若
三点共线,求以线段
为邻边的平行四边形的对角线长;
(3)(文科生做)记函数
•
,且
,求
的值.
(3)(理科生做)记函数
•
,
讨论函数
的单调性,并求其值域.
(1)
;(2)
;(3)(文)
(理)
.
【解析】
试题分析:
解题思路:(1)利用向量的坐标运算和向量相等进行求解;(2)将三点共线转化为向量共线,再利用共线条件确定
值,利用平行四边形法则与模长公式求解;(3)(文)先根据数量积公式得出
,再求有关
个三角函数值,再利用恒等变形求解;(理)先根据数量积公式得出
,再利用
的图像与性质求解.
规律总结:1.涉及平面向量运算问题,主要思路是:首先,利用平面向量基本定理,选择合适的向量作为基底,来表示有关向量;再利用数量积的有关公式进行求解(模长公式、夹角公式等);
2.涉及三角函数的最值或求值问题,往往先根据三角函数恒等变形化为
的形式,再利用三角函数的图像与性质进行求解.
试题解析:(1)设点
的坐标为
,则
,
∵
,∴
,![]()
∴![]()
![]()
∴点
的坐标为
由
三点共线知:
,
,![]()
![]()
=
所以以
为邻边的平行四边形的对角线长分别为
(3)(文科生做)∵
,
=
又
![]()
(3)(理科生做)∵
,
=![]()
∵
∴
,
∴
,即
函数
单调递增;
,即
函数
单调递减.
且
,![]()
∴
的值域为
.
考点:1平面向量的坐标运算;2.三角函数的图像与性质.
科目:高中数学 来源:2016届广东省顺德市高一上学期第2段考数学试卷(解析版) 题型:选择题
下列所给4个图象中,与所给3件事吻合最好的顺序为( )
![]()
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
A、(1)(2)(4) B、(4)(2)(3) C、(4)(1)(3) D、(4)(1)(2)
查看答案和解析>>
科目:高中数学 来源:2016届广东省高一下学期期中考试文科数学试卷(解析版) 题型:填空题
使函数f(x)=sin(2x+
)+
是奇函数,且在[0,
]上是减函数的
的一个值____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com