精英家教网 > 高中数学 > 题目详情

【题目】某课题小组共10人,已知该小组外出参加交流活动次数为123的人数分别为33 4,现从这10人中随机选出2人作为该组代表参加座谈会.

1)记“选出2人外出参加交流活动次数之和为4”为事件A,求事件A发生的概率;

2)设X为选出2人参加交流活动次数之差的绝对值,求随机变量X的分布列和数学期望.

【答案】(1) ; (2).

【解析】

(1)分别计算次数之和为的两种情况的选法,根据古典概型计算得到结果;(2)首先确定所有可能的取值为,分别结算每个取值所对应的概率,从而可得分布列;根据数学期望的公式计算可得期望.

(1)参加义工活动次数之和为,则人分别参加活动次数为“”或“

次数为“”共有:种选法;次数为“”共有:种选法

所以事件的发生的概率为

(2)随机变量的所有可能的取值为

所以随机变量的分布列为:

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)已知直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额(万元)的数据如下:

加盟店个数(个)

1

2

3

4

5

单店日平均营业额(万元)

10.9

10.2

9

7.8

7.1

(1)求单店日平均营业额(万元)与所在地区加盟店个数(个)的线性回归方程;

(2)根据试点调研结果,为保证规模和效益,在其他5个地区,该公司要求同一地区所有加盟店的日平均营业额预计值总和不低于35万元,求一个地区开设加盟店个数的所有可能取值;

(3)小赵与小王都准备加入该公司的加盟店,根据公司规定,他们只能分别从其他五个地区(加盟店都不少于2个)中随机选一个地区加入,求他们选取的地区相同的概率.

(参考数据及公式:,线性回归方程,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校开展“爱我家乡”演讲比赛,9位评委给小明同学打分的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为,复核员在复核时,发现有一个数字在茎叶图中的却无法看清,若记分员计算无误,则数字_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若对任意均有成立,求实数的取值范围;

(2)设直线与曲线和曲线相切,切点分别为,其中.

①求证:

②当时,关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱,则异面直线所成角的余弦值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知正三棱锥中点,过点作截面分别于点,且分别为的中点.

(1)证明:平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为该数列的前项和.

(1)写出数列的通项公式;

(2)计算,猜想的表达式,并用数学归纳法证明;

(3)求数列的前项和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为为常数,,且),点轴下方)是曲线的两个不同交点.

(1)求曲线的普通方程和的直角坐标方程;

(2)求的最大值及此时点的坐标.

查看答案和解析>>

同步练习册答案