精英家教网 > 高中数学 > 题目详情

函数数学公式,其中P、M为实数集R的两个非空子集,又规定A={y|y=f(x),x∈P},B={y|y=f(x),x∈M},给出下列三个判断:
①若P∩M=Φ,则A∩B=Φ;②若P∪M=R,则A∪B=R;③若P∪M≠R,则A∪B≠R.
其中错误的判断是________(只需填写序号).

①、②
分析:由函数的表达式知,可借助两个函数y=x与y=-x图象来研究,通过函数的定义域与函数的值域,结合集合的关系,分析可得答案.
解答:由题意知函数y=x,y=-x的图象如图所示.
①若P∩M=Φ,说明函数y=x,y=-x无相同的定义域的部分,但是两个函数的值域可以有相同的部分,则A∩B=Φ,不正确;
②若P∪M=R,说明函数y=x,y=-x的定义域的并集是R,但是两个函数的值域可以有相同的部分,如P=[0,+∞),M=(-∞,0],
则A∪B=[0,+∞),A∪B=R不正确;
③若P∪M≠R,说明函数y=x,y=-x的定义域的并集不是R,但是两个函数的值域可以有相同的部分,一定有A∪B≠R.
正确.
故答案为:①②.
点评:考查对题设条件的理解与转化能力,本题中题设条件颇多,审题费时,需仔细审题才能把握其脉络,故研究时借用两个函数的图象,借且图形的直观来来帮助判断命题的正误,以形助数,是解决数学问题常用的一种思路.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2.
(1)求a,b的值;
(2)若方程f(x)+m=0在[
1e
, e]
内有两个不等实根,求m的取值范围(其中e为自然对数的底).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2.
(Ⅰ)求a,b的值;
(Ⅱ)若方程f(x)+m=0在[
1e
,e]
内有两个不等实根,求m的取值范围(其中e为自然对数的底数);
(Ⅲ)令g(x)=f(x)-kx,若g(x)的图象与x轴交于A(x1,0),B(x2,0)(其中x1<x2),AB的中点为C(x0,0),求证:g(x)在x0处的导数g′(x0)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以下四个命题:
①如果x1,x2是一元二次方程的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2}
②若f(x)是奇函数,则f(0)=0;
③若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
④若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中为真命题的是
 
(填上你认为正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2
(1)求a,b的值;
(2)若方程f(x)+m=0在[
1e
,e]
内有两个不等实根,求实数m的取值范围(其中e为自然对数的底,e≈2.7);
(3)令g(x)=f(x)-nx,如果g(x)图象与x轴交于A(x1,0),B(x2,0),x1<x2,AB中点为C(x0,0),求证:g′(x0)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx-x2(x>0).
(1)求函数f(x)的单调区间与最值;
(2)若方程2xlnx+mx-x3=0在区间[
1e
,e]
内有两个不相等的实根,求实数m的取值范围;  (其中e为自然对数的底数)
(3)如果函数g(x)=f(x)-ax的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,求证:g'(px1+qx2)<0(其中,g'(x)是g(x)的导函数,正常数p,q满足p+q=1,q>p)

查看答案和解析>>

同步练习册答案