精英家教网 > 高中数学 > 题目详情
11.已知$\vec a$=(1,1),$\vec b$=(1,-1),则向量3$\vec a-2\vec b$=(  )
A.(1,5)B.(5,1)C.(5,5)D.(1,1)

分析 直接利用向量的运算法则求解即可.

解答 解:$\vec a$=(1,1),$\vec b$=(1,-1),则向量3$\vec a-2\vec b$=3(1,1)-2(1,-1)=(1,5).
故选:A.

点评 本题考查向量的基本运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设定义在R上的函数y=f(x)满足f(x)•f(x+2)=12,且f(2017)=2,则f(3)=(  )
A.12B.6C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线$\left\{{\begin{array}{l}{x=4{t^2}}\\{y=4t}\end{array}}\right.$(t为参数)的焦点为F,则点M(3,m)到F的距离|MF|为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{3}{2}{x^2}$+2ax+lnx,a∈R
(1)讨论函数f(x)的单调区间;
(2)若函数f(x)在$(\frac{1}{3},\frac{2}{3})$内单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xoy中,过点P(2,0)的直线l的参数方程为$\left\{\begin{array}{l}{x=2-\sqrt{3}t}\\{y=t}\end{array}\right.$(t为参数),圆C的方程为x2+y2=4,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l的普通方程和圆C的极坐标方程;
(2)求圆心C到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,A(4,4$\sqrt{10}}$),则|PA|+|PM|的最小值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线x-3y-1=0在y轴上的截距是$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于给定数列{xn},若存在一个常数k∈N*,对于任意的n∈N*,使得xn+k=xn成立,则称数列{xn}是周期数列,k是数列{xn}的一个周期,若k是数列{xn}的周期,且1,2,…,k-1均不是数列{xn}的周期,则称k为数列{xn}的最小周期.已知数列{an}的最小周期为4,前n项和为Sn,且4Sn=(an+1)2
(1)求a1的值;
(2)求数列{an}通项公式an和前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=ex+x2+x+1与g(x)的图象关于直线2x-y-3=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案