精英家教网 > 高中数学 > 题目详情
如图所示,已知椭圆=1(a>b>0)内一点A,F1为左焦点,在椭圆上求一点P,使|PF1|+|PA|取得最值.

解析:根据椭圆的定义|PF1|+|PF2|=2a,

∴|PF1|=2a-|PF2|.

∴|PF1|+|PA|=2a+(|PA|-|PF2|).

在△PAF2中,|PA|-|PF2|≤|AF2|.

当且仅当点P在AF2的延长线上时|PA|-|PF2|取得最大值|AF2|.

此时|PF1|+|PA|最大为=2a+|AF2|.

又△PAF2中,|PF2|-|PA|≤|AF2|,

当且仅当点P在F2A的延长线上时,|PA|-|PF2|取得最小值-|AF2|.

此时|PF1|+|PA|最小为2a-|AF2|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(  )
A、
2
2
B、
3
3
C、
6
3
D、
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)如图所示:已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,F1、F2为其左、右焦点,A为右顶点,过F1的直线l与椭圆相交于P、Q两点,且有
1
|PF1|
+
1
|QF|
=2

(1)求椭圆长半轴长a的取值范围;
(2)若
AP
AQ
=a2且a∈(
4
3
9
5
)
,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线l在y轴上的截距为m(m≠0),且交椭圆于A,B两不同点.
(1)求椭圆的方程;
(2)求m的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆C:x2+
y2
a2
=1(a>1)的离心率为e,点F为其下焦点,点A为其上顶点,过F的直线l:y=mx-c(其中c=
a2-1
与椭圆C相交于P,Q两点,且满足
AP
AQ
=
a2(a+c)2-1
2-c2

(1)试用a表示m2
(2)求e的最大值;
(3)若e∈(
1
3
1
2
),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示:已知椭圆方程为
y2
a2
+
x2
b2
=1(a>b>0)
,A,B是椭圆与斜轴的两个交点,F是椭圆的焦点,且△ABF为直角三角形.
(1)求椭圆离心率;
(2)若椭圆的短轴长为2,过F的直线与椭圆相交的弦长为
3
2
2
,试求弦所在直线的方程.

查看答案和解析>>

同步练习册答案