精英家教网 > 高中数学 > 题目详情
12.已知fn(x)=(ax+$\frac{1}{x}$)n,且f4(x)展开式的各项系数和为81.
(1)求a的值;
(2)若g(x)=f1($\frac{1}{x}$)•f5(x),求g(x)展开式的常数项.

分析 (1)由已知可得(1+a)4=81,由此解得a的值.
(2)由于g(x)=f1($\frac{1}{x}$)•f5(x)=($\frac{2}{x}$+x)(2x+$\frac{1}{x}$)5,可得 g(x)展开式的常数项.

解答 解:(1)由已知fn(x)=(ax+$\frac{1}{x}$)n,且f4(x)展开式的各项系数和为81,
可得(1+a)4=81,解得a=2.
(2)∵g(x)=f1($\frac{1}{x}$)•f5(x)=($\frac{2}{x}$+x)(2x+$\frac{1}{x}$)5
∴g(x)展开式的常数项为2•${C}_{5}^{2}$•23+${C}_{5}^{3}$•22=200.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝构成如图1所示的正六边形,第三件首饰是由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有66颗珠宝;则第n件首饰所用珠宝总数为2n2-n颗.(结果用n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a>0,b>0,a+b=1则-$\frac{1}{2a}-\frac{2}{b}$的最大值为(  )
A.-3B.-4C.$-\frac{1}{4}$D.$-\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用一个平面去截球所得的截面面积为2πcm2,已知球心到该截面的距离为1cm,则该球的体积为4$\sqrt{3}$πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)的导数为f′(x)=2x,且x=1时,y=2,则这个函数的解析式为f(x)=x2+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=$\frac{x}{2}$+cosx的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=cos2$\frac{x}{2}$-sin$\frac{x}{2}$cos$\frac{x}{2}$-$\frac{1}{2}$,若f(α)=$\frac{3\sqrt{2}}{10}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,将全体正奇数排成一个三角形数阵:按照以上排列的规律,第45行从左向右的第17个数为2013.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\frac{1}{3}{x^3}$+bx2+(b+2)x+3是R上的单调增函数,则b的取值范围是[-1,2].

查看答案和解析>>

同步练习册答案