精英家教网 > 高中数学 > 题目详情
2.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝构成如图1所示的正六边形,第三件首饰是由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有66颗珠宝;则第n件首饰所用珠宝总数为2n2-n颗.(结果用n表示)

分析 由题意可知a1,a2,a3,a4,a5的值,则a2-a1=5,a3-a2=9,a4-a3=13,a5-a4=17,猜想a6-a5=21,从而得a6的值和an-an-1=4n-3,所以(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)+(a6-a5)+…+(an-an-1)=an-a1求得通项公式an

解答 解:由题意,知a1=1,a2=6,a3=15,a4=28,a5=45,a6=66,…;
∴a2-a1=5,
a3-a2=9,
a4-a3=13,
a5-a4=17,
a6-a5=21,
…,
an-an-1=4n-3;
∴(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)+(a6-a5)+…+(an-an-1
=an-a1=5+9+13+17+21+…+(4n-3)=2n2-n-1;
∴an=2n2-n.
故答案为:66;2n2-n.

点评 本题考查了数列的递推关系以及求和公式的综合应用,解题时要探究数列的递推关系,得出通项公式,并能正确求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若实数a,b,c成等差数列,点P(-1,-2)在动直线l:ax+by+c=0上的射影为点M,点N(3,2),则|MN|的最大值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若函数f(x)=$\frac{1-2a}{x+2}$在区间(-2,+∞)递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.将棱长相等的正方体按右图所示的形状摆放,从上往下依次为第1层,第2层,第3层,…,则第n层正方体的个数是$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2x3-ax与g(x)=bx2+c的图象都过点P(2,0),且在点P处有公共切线,求f(x)、g(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2$\frac{x}{2}$-sin2$\frac{x}{2}$+sinx.
(1)求函数f(x)的值域;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.$sin\frac{5π}{6}$的值是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在R上定义运算@/:x@/y=xy+2x+y,则满足a@/(a-2)<0的a的解集是{x|-2<a<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知fn(x)=(ax+$\frac{1}{x}$)n,且f4(x)展开式的各项系数和为81.
(1)求a的值;
(2)若g(x)=f1($\frac{1}{x}$)•f5(x),求g(x)展开式的常数项.

查看答案和解析>>

同步练习册答案