精英家教网 > 高中数学 > 题目详情
4.已知A,B是单位圆O上的动点,且A,B分别在第一,二象限.C是圆与x轴正半轴的交点,△AOB为正三角形,记∠AOC=α
(1)若A点的横坐标为$\frac{3}{5}$,求tan(540°-α)的值;
(2)若tan(α+60°)=-$\frac{3}{4}$,求B、C两点之间的距离.

分析 (1)可得A点纵坐标为$\frac{4}{5}$,由三角函数的定义可得tanα=$\frac{4}{3}$,由诱导公式可得;
(2)由题意可得tan∠COB=-$\frac{3}{4}$,进而可得B(-$\frac{4}{5}$,-$\frac{3}{5}$),由两点之间的距离公式可得.

解答 解:(1)当A点的横坐标为$\frac{3}{5}$时,纵坐标为$\frac{4}{5}$,
∴由三角函数的定义可得tanα=$\frac{4}{3}$,
∴tan(540°-α)=tan(180°×3-α)=-tanα=-$\frac{4}{3}$;
(2)∵tan(α+60°)=tan∠COB=-$\frac{3}{4}$,
∴B(-$\frac{4}{5}$,-$\frac{3}{5}$),又C(1,0),
∴B、C两点之间的距离为$\sqrt{(-\frac{4}{5}-1)^{2}+(-\frac{3}{5}-0)^{2}}$=$\frac{3\sqrt{10}}{25}$

点评 本题考查三角函数的定义,涉及两点间的距离公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若sinα=-$\frac{\sqrt{10}}{10}$,且α为第四象限角,则tanα的值等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.sin2(π+α)-cos(π+α)cosα+1的值是(  )
A.2B.1C.2sin2αD.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sin(π+α)=-$\frac{1}{2}$,计算:
(1)sin(5π-α):
(2)sin(α-3π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=-tan2x-tanx-3,x∈[-$\frac{π}{4}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中真命题的个数是(  )
①已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|必大于|$\overrightarrow{a}$|与|$\overrightarrow{b}$|中任意一个;
②若$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$,则A,B,C为三角形的三个顶点;
③设$\overrightarrow{a}$≠$\overrightarrow{0}$,若$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow{b}$),则$\overrightarrow{a}$∥$\overrightarrow{b}$;
④若|$\overrightarrow{a}$|-|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则$\overrightarrow{b}$=$\overrightarrow{0}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若曲线C1,y=x2与曲线C2:y=aex存在公切线,则a的(  )
A.最大值为$\frac{8}{{e}^{2}}$B.最大值为$\frac{4}{{e}^{2}}$C.最小值为$\frac{8}{{e}^{2}}$D.最小值为$\frac{4}{{e}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知m∈R,函数f(x)=$\left\{\begin{array}{l}{|x+1|,}&{x<1}\\{lg(x-1),}&{x>1}\end{array}\right.$,g(x)=x2-2x+2m-2,若函数y=f(g(x))-m有6个零点,则实数m的取值范围是(  )
A.(1,2)B.($\frac{3}{4}$,1)C.($\frac{2}{3}$,$\frac{3}{4}$)D.(0,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知复数$z=\frac{{{{(1+i)}^2}+2(5-i)}}{3+i}$,
(1)求|z|;
(2)若z(z+a)=b+i,求实数a,b的值.

查看答案和解析>>

同步练习册答案