精英家教网 > 高中数学 > 题目详情
设函数
(1)当时,求函数的单调递减区间;
(2)若函数有相同的极大值,且函数在区间上的
最大值为,求实数的值.(其中e是自然对数的底数).
(1)定义域为,得到递减区间为.
(2)函数的极大值为0,且,而,令上递增,在上递减,所以,所以,则,根据题意得

所以函数上单调递减,,得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)如果函数上是单调函数,求的取值范围;
(Ⅱ)是否存在正实数,使得函数在区间内有两个不同的零点?若存在,请求出的取值范围;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数时有极值10,则实数的值是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=kx3+3(k-1)x2+1在区间(0,4)上是减函数,则的取值范围 (  )                                             
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当时,求函数上的最大值、最小值;
(Ⅱ)令,若上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:函数f(x)=告xx+。一2a2 xre(a,“)·
(I)求f(x)的单调区间福
(II)若f(x) >0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数上的导函数为,上的导函数为,若在上,恒成立,则称函数上为“凸函数”.已知当时,上是“凸函数”.则上   (    )
A.既有极大值,也有极小值B.既有极大值,也有最小值
C.有极大值,没有极小值D.没有极大值,也没有极小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知的导函数的简图,它与轴的交点是(0,0)和(1,0),


(1)求的解析式及的极大值.
(2)若在区间(m>0)上恒有≤x成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知R上可导函数的图象如图所示,则不等式的解集为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案