精英家教网 > 高中数学 > 题目详情
19.若a=20.6,b=logπ3,c=log2sin$\frac{2π}{5}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

分析 利用指数、对数与三角函数的单调性即可得出.

解答 解:∵a=20.6>1,b=logπ3∈(0,1),c=log2sin$\frac{2π}{5}$<0,
∴a>b>c.
故选:A.

点评 本题考查了指数、对数与三角函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数$f(x)=tan(2x+\frac{π}{6})-1$在(0,π)上的零点是$\frac{π}{24}$或$\frac{13π}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).
(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;
(2)当{bn}是公比为a-1的等比数列时,{an}能否为等比数列?若能,求出a的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x,y∈Z,x2+y2=2015,则?p为(  )
A.?x,y∈Z,x2+y2≠2015B.?x,y∈Z,x2+y2≠2015
C.?x,y∈Z,x2+y2=2015D.不存在x,y∈Z,x2+y2=2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的三个顶点坐标为A(-3,1),B(3,-3),C(1,7).
(1)求BC边上的中线AM的方程;
(2)证明:△ABC为等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α的终边上一点的坐标为(-5,12),则sinα=$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在以A,B,C,D,E为顶点的五面体中,O为AB的中点,AD⊥平面ABC,AD∥BE,AC⊥CB,$AC=2\sqrt{2}$,AB=2BE=4AD=4.
(1)在图中过点O作平面α,使得α∥平面CDE,并说明理由;
(2)求直线DE与平面CBE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f(x)=lnx,f'(x)是f(x)的导数,若$g(x)=f(x)-\frac{2}{f'(x)}-a$有两个不相同的零点,则实数a的取值范围是(-∞,ln$\frac{1}{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知m>0,n>0,f(x)=|x+m|+|2x-n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值为2,求m2+$\frac{n^2}{4}$的最小值.

查看答案和解析>>

同步练习册答案