.已知点为椭圆的左右焦点,过的直线交该椭圆于两点,的内切圆的周长为,则的值是( )
A. | B. | C. | D. |
D
解析考点:椭圆的简单性质.
分析:根据椭圆方程求得a和c,及左右焦点的坐标,进而根据三角形内切圆面积求得内切圆半径,进而根据△ABF2的面积=△AF1F2的面积+△BF1F2的面积求得△ABF2的面积=3|y2-y1|进而根据内切圆半径和三角形周长求得其面积,建立等式求得|y2-y1|的值.
解:椭圆:,a=5,b=4,∴c=3,
左、右焦点F1(-3,0)、F2( 3,0),
△ABF2的内切圆面积为π,则内切圆的半径为r=,
而s△ABF2=S△AF1F2+S△BF1F2=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=3|y2-y1|(A、B在x轴的上下两侧)
又S△ABF2=×|r(|AB|+|BF2|+|F2A|=×(2a+2a)=a=5.
所以 3|y2-y1|=5,
|y2-y1|=.
故选D.
科目:高中数学 来源: 题型:单选题
我国于2010年10月1日成功发射嫦娥二号卫星,卫星飞行约两小时到达月球,到达月球以后,经过几次变轨将绕月球以椭圆型轨道飞行,其轨迹是以月球的月心为一焦点的椭圆。若第一次变轨前卫星的近月点到月心的距离为m,远月点到月心的距离为n,第二次变轨后两距离分别为2m,2n.则第一次变轨前的椭圆离心率比第二次变轨后的椭圆离心率 ( )
A.变大 | B.变小 | C.不变 | D.与的大小有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知点分别是双曲线的左、右焦点,过F1且垂直于X轴的直线与双曲线交于A,B两点,若为钝角三角形,则该双曲线的离心率e的取值范围是
A.() | B.() | C.(•) | D.(1,1 +) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com