精英家教网 > 高中数学 > 题目详情
函数f(x)=x+
1
x
的图象是(  )
分析:研究函数f(x)=x+
1
x
的定义域及奇偶性,即可得出答案.
解答:解:当x>0时,y=x和y=
1
x
的值都是正数,故它们的和函数f(x)=x+
1
x
的值也是正数,排除D;
当x=0时f(x)无意义,即无图象;
f(-x)=-x-
1
x
=-f(x),故函数是奇函数,图象关于原点对称,排除A,B
故选C.
点评:本题主要考查了函数的图象.解题的关键是要将题中的函数利用所学知识转化为所熟知的基本初等函数然后再利用图象的性质即可正确做出图象但要注意定义域的限制!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中所有正确的序号是
(1)(4)
(1)(4)

(1)函数f(x)=ax-1+3(a>0且a≠1)的图象一定过定点P(1,4);
(2)函数f(x-1)的定义域是(1,3),则函数f(x)的定义域为(2,4);
(3)已知f(x)=x5+ax3+bx-8,且f(-2)=8,则f(2)=-8;
(4)已知2a=3b=k(k≠1)且
1
a
+
2
b
=1,则实数k=18.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在常数m>0,使|f(x)|≤m|x|对一切实数x均成立,则称f(x)为F函数.给出下列函数:
①f(x)=0;②f(x)=x2;③f(x)=
2
(sinx+cosx)
;④f(x)=
x
x2+x+1
;其中是F函数的序号为
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•莱芜二模)已知函数f(x)=x-4+
9
x+1
(x>-1)
,当x=a时,f(x)取得最小值,则在直角坐标系中,函数g(x)=(
1
a
)|x+1|
的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案