精英家教网 > 高中数学 > 题目详情
15.已知复数z满足(3+4i)z=5i2016(i为虚数单位),则|z|=1.

分析 由(3+4i)z=5i2016,得$z=\frac{5{i}^{2016}}{3+4i}$,然后利用复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.

解答 解:由(3+4i)z=5i2016
得$z=\frac{5{i}^{2016}}{3+4i}$=$\frac{5({i}^{4})^{504}}{3+4i}=\frac{5}{3+4i}=\frac{5(3-4i)}{(3+4i)(3-4i)}$=$\frac{3-4i}{5}=\frac{3}{5}-\frac{4}{5}i$,
则|z|=$\sqrt{(\frac{3}{5})^{2}+(-\frac{4}{5})^{2}}=1$.
故答案为:1.

点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图1,等腰梯形BCDP中,BC∥PD,BA⊥PD于点A,PD=3BC,且AB=BC=1.沿AB把△PAB折起到△P'AB的位置(如图2),使∠P'AD=90°.
(Ⅰ)求证:CD⊥平面P'AC;
(Ⅱ)求二面角A-P'D-C的余弦值;
(Ⅲ)线段P'A上是否存在点M,使得BM∥平面P'CD.若存在,指出点M的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={0,1,2,3},B=$\{x∈N\left|{y=\sqrt{x-1}}\right.\}$,则A∩B=(  )
A.{0,1,2}B.{1,2,3}C.{x|x≥1}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“若a2+b2=0,则a=0且b=0”的逆否命题是 (  )
A.若a2+b2≠0,则a≠0且b≠0”B.若a2+b2≠0,则a≠0或b≠0”
C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系xOy中,已知$x_1^2-ln{x_1}-{y_1}=0$,x2-y2-2=0,则${({x_2}-{x_1})^2}+{({y_2}-{y_1})^2}$的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=-1,${a_{n+1}}=\frac{{(3n+3){a_n}+4n+6}}{n},n∈{N^*}$.
(1)求证:数列$\left\{{\frac{{{a_n}+2}}{n}}\right\}$是等比数列;
(2)设${b_n}=\frac{{{3^{n-1}}}}{{{a_n}+2}},n∈{N^*}$,求证:当n≥2,n∈N*时,${b_{n+1}}+{b_{n+2}}+…+{b_{2n}}<\frac{4}{5}-\frac{1}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{k}$=1的离心率为$\frac{1}{2}$,则k的值为(  )
A.3B.$\frac{16}{3}$C.3或$\frac{16}{3}$D.$\frac{19}{25}$或21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.对于正整数k,记g(k)表示k的最大奇数因数.例如:g(1)=1,g(2)=1,g(10)=5.设Sn=g(1)+g(2)+g(3)+…+g(2n
给出下列四个结论:
①g(3)+g(4)=10
②?m∈N*,都有g(2m)=g(m)
③S1+S2+S3=30
④Sn-Sn-1=4n-1,n≥2,n∈N*
则以上结论正确有②③④.(填写所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow{b}$=(-1,-2).
(1)求$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的余弦值;
(2)若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与2$\overrightarrow{a}$+$\overrightarrow{b}$垂直,求λ的值.

查看答案和解析>>

同步练习册答案