精英家教网 > 高中数学 > 题目详情
11.若tanx=-1,则{x|x=k$π-\frac{π}{4}$.k∈Z}.

分析 直接利用三角方程求解即可.

解答 解:因为tan$\frac{3π}{4}$=-1,tan(-$\frac{π}{4}$)=-1,
正切函数y=tanx的周期为:π,
所以方程的解为:x=k$π-\frac{π}{4}$.k∈Z.
方程的解集为:{x|x=k$π-\frac{π}{4}$.k∈Z}.
故答案为:k$π-\frac{π}{4}$.k∈Z.

点评 本题考查三角方程的解法,特殊角的三角函数求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(-1,$\sqrt{3}$cosθ),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,其中θ∈(0,$\frac{π}{2}$).
(1)求θ的值;
(2)若cos(ω-θ)=$\frac{3}{5}$,0<ω<$\frac{π}{2}$,求sinω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=sin(2x-$\frac{π}{6}$)(x∈[0,π]),则f(x)的递减区间是[$\frac{π}{3}$,$\frac{5π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$\sqrt{{x}^{2}-8x+16}$=x-4,则实数x的取值范围是[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.现有一个能容纳10个半径为1的小球的封闭正四面体容器,则该容器棱长最小值为(  )
A.4+2$\sqrt{2}$B.4+2$\sqrt{3}$C.4+2$\sqrt{6}$D.6+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一中高三年级在一次考试的数学题中,设立了平面几何、极坐标与参数方程的不等式三道选做题,若张明、王小强、李文3名学生必须且只需从中选做一题,且每名学生选做何题相互独立.
(1)求张明、王小强、李文3名学生有且只有一人选做平面几何,没有人选做不等式试题的概率;
(2)求这3名学生选做不等式或平面几何题的人数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050
(1)用分层抽样的方法在喜欢打篮球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,由公式K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$计算出K2≈8.333,那么你能否有99.5%的把握认为是否喜欢打篮球与性别有关?
附临界值表:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}中,a1=-60,an+1=an+3,若数列{bn}满足bn=|an|,则数列{bn}前30项和为765.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=2x,它的反函数是f-1(x),a=f-1(3),b=f-1(4),c=f-1(π),则下面关系式中正确的是(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

同步练习册答案