精英家教网 > 高中数学 > 题目详情
已知焦点在轴上,中心在坐标原点的椭圆C的离心率为,且过点(题干自编)
(I)求椭圆C的方程;
(II)直线分别切椭圆C与圆(其中)于两点,求的最大值。
解(I)设椭圆,则
 ………………2分
椭圆过点 解得………………3分
椭圆方程为    ………………4分
(II)设分别为直线与椭圆和圆的切点,直线的方程为:
 消去得:
由于直线与椭圆相切,所以
从而可得:             ①
              ②………………7分
 消去得: 
由于直线与圆相切,所以
从而可得:        ③
            ④………………9分
由 ②④得: 
由①③得:  ………………10分
………………11分
………………11分
最大值为2. ………………13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点轴上,且焦距为,实轴长为4
(Ⅰ)求椭圆的方程;
(Ⅱ)在椭圆上是否存在一点,使得为钝角?若存在,求出点的横坐标的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
椭圆过点P,且离心率为,F为椭圆的右焦点,两点在椭圆上,且 ,定点(-4,0).

(Ⅰ)求椭圆C的方程;
(Ⅱ)当时 ,问:MN与AF是否垂直;并证明你的结论.
(Ⅲ)当两点在上运动,且 =6, 求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是椭圆上的点,是椭圆的焦点,若
. 则此椭圆的离心率为(   )                                                                     
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分).已知椭圆离心率,焦点到椭圆上
的点的最短距离为
(1)求椭圆的标准方程。
(2)设直线与椭圆交与M,N两点,当时,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.椭圆的左准线为,左、右焦点分别为,抛物线的准线也为,焦点为,记的一个交点为,则(    )
A.B.1C.2D.与的取值有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知中心在原点,焦点在x轴上的椭圆经过点(),且它的左焦点F1将长轴分成2∶1,F2是椭圆的右焦点.

(1)求椭圆的标准方程;
(2)设P是椭圆上不同于左右顶点的动点,延长F1P至Q,使Q、F2关于∠F1PF2的外角平分线l对称,求F2Q与l的交点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以原点为顶点,以椭圆C:的左准为准线的抛物线交椭圆C的右准
线交于A、B两点,则|AB|=        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左右焦点分别为,P为椭圆上一点,且
,则椭圆的离心率e=__________。

查看答案和解析>>

同步练习册答案