函数
在区间
上都有意义,且在此区间上
①
为增函数,
;
②
为减函数,
.
判断
在
的单调性,并给出证明.
科目:高中数学 来源:2014届安徽省高二下学期期末考试数学试卷(解析版) 题型:解答题
对于在区间 [ m,n ] 上有意义的两个函数
与
,如果对任意
,均有
,则称
与
在 [ m,n ] 上是友好的,否则称
与
在 [ m,n ]是不友好的.现有两个函数
与
(a > 0且
),给定区间
.
(1)若
与
在给定区间
上都有意义,求a的取值范围;
(2)讨论
与
在给定区间
上是否友好.
查看答案和解析>>
科目:高中数学 来源:2011年安徽省高二下学期第一次月考数学文卷 题型:解答题
(14分)
函数
在区间
上都有意义,且在此区间上
①
为增函数,
;
②
为减函数,
.
判断
在
的单调性,并给出证明.
查看答案和解析>>
科目:高中数学 来源:2014届重庆市高一上学期期末考试数学 题型:解答题
(12分) 对于在区间 [ m,n ] 上有意义的两个函数
与
,如果对任意
,均有
,则称
与
在 [ m,n ] 上是友好的,否则称
与
在 [ m,n ]是不友好的.现有两个函数
与
(a > 0且
),给定区间
.
(1)
若
与
在给定区间
上都有意义,求a的取值范围;
(2)
讨论
与
在给定区间
上是否友好.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com