精英家教网 > 高中数学 > 题目详情

【题目】f(x)=2cos2x﹣2acosx﹣1﹣2a的最小值为g(a),a∈R
(1)求g(a);
(2)若g(a)= ,求a及此时f(x)的最大值.

【答案】
(1)解:f(x)=2cos2x﹣2acosx﹣1﹣2a=2(cosx﹣ 2 ﹣2a﹣1,

当﹣1≤ ≤1,g(a)=﹣ ﹣2a﹣1,

>1时,时g(a)=1﹣4a

<﹣1时,g(a)=1,

综合以上,g(a)=


(2)解:令1﹣4a= 求得a= 不符合题意,

令﹣ ﹣2a﹣1= ,求得a=﹣1或﹣3(舍去)

故f(x)的最大值为5,a的值为﹣1


【解析】(1)利用二倍角公式对函数解析式化简,配方后,讨论 的范围确定g(a)的解析式,最后综合即可.(2)利用每个范围段的解析式求得a的值,最后验证a即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;
(2)设AP=1,AD= ,三棱锥P﹣ABD的体积V= ,求A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足

(1)求证:数列为等差数列;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a、b、c是△ABC中∠A、∠B、∠C的对边, ,b=6,
(1)求c;
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,2cos(A﹣C)+cos2B=1+2cosAcosC.
(1)求证:a,b,c依次成等比数列;
(2)若b=2,求u=| |的最小值,并求u达到最小值时cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(注:方差 ,其中 为x1 , x2 , …xn的平均数)

(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若A= ,b(1﹣cosC)=ccosA,b=2,则△ABC的面积为( )
A.
B.2
C.
D.或2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别交单位圆于A,B两点.已知A,B两点的横坐标分别是

(1)求tan(α+β)的值;
(2)求α+2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2﹣2ax+a=0,x∈R},B={x|x2﹣4x+a+5=0,x∈R},若A和B中有且仅有一个是,则实数a的取值范围是

查看答案和解析>>

同步练习册答案