20£®Ä³Ê¡¸ß¿¼¸Ä¸ïʵʩ·½°¸Ö¸³ö£º¸ÃÊ¡¸ß¿¼¿¼Éú×ܳɼ¨½«ÓÉÓïÎÄ¡¢Êýѧ¡¢ÍâÓï3ÃÅͳһ¸ß¿¼³É¼¨ºÍѧÉú×ÔÖ÷Ñ¡ÔñµÄѧҵˮƽµÈ¼¶ÐÔ¿¼ÊÔ¿ÆÄ¿¹²Í¬¹¹³É£®¸ÃÊ¡½ÌÓýÌüΪÁ˽âÕý¾Í¶Á¸ßÖеÄѧÉú¼Ò³¤¶Ô¸ß¿¼¸Ä¸ï·½°¸Ëù³ÖµÄÔÞ³É̬¶È£¬Ëæ»ú´ÓÖгéÈ¡ÁË100Ãû³ÇÏç¼Ò³¤×÷ΪÑù±¾½øÐе÷²é£¬µ÷²é½á¹ûÏÔʾÑù±¾ÖÐÓÐ25È˳ֲ»ÔÞ³ÉÒâ¼û£®ÏÂÃæÊǸù¾ÝÑù±¾µÄµ÷²é½á¹û»æÖƵĵȸßÌõÐÎͼ£®
£¨1£©¸ù¾ÝÒÑÖªÌõ¼þÓëµÈ¸ßÌõÐÎͼÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÎÒÃÇÄÜ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ¡°Ô޳ɸ߿¼¸Ä¸ï·½°¸Óë³ÇÏç»§¿ÚÓйء±£¿
Ô޳ɲ»Ô޳ɺϼÆ
³ÇÕò¾ÓÃñ
Å©´å¾ÓÃñ
ºÏ¼Æ
×¢£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}£¬ÆäÖÐn=a+b+c+d$
P£¨K2¡Ýk0£©0.100.050.005
k02.7063.8417.879
£¨2£©ÓÃÑù±¾µÄƵÂʹÀ¼Æ¸ÅÂÊ£¬ÈôËæ»úÔÚȫʡ²»Ô޳ɸ߿¼¸Ä¸ïµÄ¼Ò³¤ÖгéÈ¡3¸ö£¬¼ÇÕâ3¸ö¼Ò³¤ÖÐÊdzÇÕò»§¿ÚµÄÈËÊýΪx£¬ÊÔÇóxµÄ·Ö²¼Áм°ÊýѧÆÚÍûE£¨x£©£®

·ÖÎö £¨2£©Íê³É2¡Á2ÁÐÁª±í£¬Çó³öK2¡Ö3.03£¼3.841£®´Ó¶øÎÒÃÇûÓÐ95%µÄ°ÑÎÕÈÏΪ¡±Ô޳ɸ߿¼¸Ä¸ï·½°¸Óë³ÇÏç»§¿ÚÓйء±£®
£¨2£©ÓÃÑù±¾µÄƵÂʹÀ¼Æ¸ÅÂÊ£¬Ëæ»úÔÚȫʡ²»Ô޳ɸ߿¼¸Ä¸ïµÄ¼Ò³¤ÖгéÖгÇÕò»§¿Ú¼Ò³¤µÄ¸ÅÂÊΪ0.6³éÖÐÅ©´å»§¿Ú¼Ò³¤µÄ¸ÅÂÊΪ0.4£¬XµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍE£¨X£©£®

½â´ð ½â£º£¨1£©Íê³É2¡Á2ÁÐÁª±í£¬ÈçÏ£º

Ô޳ɲ»Ô޳ɺϼÆ
³ÇÕò¾ÓÃñ301545
Å©´å¾ÓÃñ451055
ºÏ¼Æ7525100
´úÈ빫ʽ£¬µÃK2¹Û²âÖµ£º
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$=$\frac{100¡Á£¨300-675£©^{2}}{45¡Á55¡Á75¡Á25}$¡Ö3.03£¼3.841£®
¡àÎÒÃÇûÓÐ95%µÄ°ÑÎÕÈÏΪ¡±Ô޳ɸ߿¼¸Ä¸ï·½°¸Óë³ÇÏç»§¿ÚÓйء±£®
£¨2£©ÓÃÑù±¾µÄƵÂʹÀ¼Æ¸ÅÂÊ£¬Ëæ»úÔÚȫʡ²»Ô޳ɸ߿¼¸Ä¸ïµÄ¼Ò³¤ÖгéÖгÇÕò»§¿Ú¼Ò³¤µÄ¸ÅÂÊΪ0.6
³éÖÐÅ©´å»§¿Ú¼Ò³¤µÄ¸ÅÂÊΪ0.4
XµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨X=0£©=£¨0.4£©3=0.064£¬
P£¨X=1£©=${C}_{3}^{1}¡Á0.6¡Á£¨0.4£©^{2}$=0.288£¬
P£¨X=2£©=${C}_{3}^{2}¡Á0£®{6}^{2}¡Á0.4$=0.432£¬
P£¨X=3£©=${C}_{3}^{3}¡Á0£®{6}^{3}$=0.216£¬
¡àXµÄ·Ö²¼ÁÐΪ£º
X0123
P0.0640.2880.4320.216
E£¨X£©=0¡Á0.064+1¡Á0.288+2¡Á0.432+3¡Á0.216=1.8£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢¼ìÑéµÄÓ¦Ó㬿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÊýѧÆÚÍûµÄÇ󷨣¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Éè¡÷ABCÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬2sinCsinB=sinB-sin£¨A-C£©£®
£¨I£©Åжϡ÷ABCµÄÐÎ×´£»
£¨¢ò£©µ±BΪ¶Û½Çʱ£¬ÇósinA+sinCµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Ò»¸ö³¤·½ÌåµÄ°Ë¸ö¶¥µã¶¼ÔÚÇòÃæÉÏ£¬³¤·½ÌåµÄ³¤¡¢¿í¡¢¸ß·Ö±ðΪ$\sqrt{3}£¬\sqrt{2}£¬\sqrt{2}$£¬ÔòÇòµÄ±íÃæ»ýÊÇ7¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁк¯ÊýΪżº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=$\sqrt{x}$B£®y=lnxC£®y=cos£¨x-$\frac{¦Ð}{2}$£©D£®y=ex$+\frac{1}{{e}^{x}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÉèÔ²x2+y2+2$\sqrt{3}$x-13=0µÄÔ²ÐÄΪA£¬Ö±Ïßl¹ýµãB£¨$\sqrt{3}$£¬0£©ÇÒÓëxÖá²»ÖØºÏ£¬l½»Ô²AÓÚC£¬DÁ½µã¹ýB×÷ACµÄƽÐÐÏß½»ADÓÚµãE
£¨¢ñ£©Ö¤Ã÷£º|EA|+|EB|Ϊ¶¨Öµ£¬²¢Ð´³öµãEµÄ¹ì¼£·½³Ì
£¨¢ò£©Éè¹ýµãM£¨0£¬2£©µÄÖ±ÏßtÓëµãEµÄ¹ì¼£½»ÓÚyÖáÓҲ಻ͬµÄÁ½µãP£¬Q£¬ÈôOÔÚÒÔPQΪֱ¾¶µÄÔ²ÉÏ£¬ÇóÖ±ÏßtµÄбÂÊkµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èôº¯Êýf£¨x£©=log0.2£¨kx2-kx+1£©µÄ¶¨ÒåÓòΪR£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ[0£¬4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª¹ýµãA£¨0£¬1£©µÄ¶¯Ö±ÏßlÓëÔ²C£ºx2+y2-4x-2y-3=0½»ÓÚM£¬NÁ½µã£®
£¨¢ñ£©ÉèÏß¶ÎMNµÄÖеãΪP£¬ÇóµãPµÄ¹ì¼£·½³Ì£»
£¨¢ò£©Èô$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èô£¨1+y2£©£¨x-$\frac{1}{{x}^{4}y}$£©n£¨n¡ÊN*£©µÄÕ¹¿ªÊ½ÖдæÔÚ³£ÊýÏÔò³£ÊýÏîΪ45£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪ½ÇA£¬B£¬CËù¶ÔµÄ±ß³¤£¬ÇÒc=-3bcosA£®
£¨1£©Çó$\frac{{{a^2}-{b^2}}}{c^2}$µÄÖµ£»  
£¨2£©ÈôtanC=$\frac{3}{4}$£®ÊÔÇótanBµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸