精英家教网 > 高中数学 > 题目详情
8.下列函数为偶函数的是(  )
A.y=$\sqrt{x}$B.y=lnxC.y=cos(x-$\frac{π}{2}$)D.y=ex$+\frac{1}{{e}^{x}}$

分析 利用函数的奇偶性的定义以及常见函数的奇偶性判断即可.

解答 解:y=$\sqrt{x}$是非奇非偶函数;
y=lnx是非奇非偶函数;
y=cos(x-$\frac{π}{2}$)=sinx是奇函数;
y=ex$+\frac{1}{{e}^{x}}$,满足f(-x)=f(x),函数是偶函数;
故选:D.

点评 本题考查函数的奇偶性的判断,常见函数的奇偶性的应用是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a+3)x+b在R上不是单调函数,则实数a的取值范围是(  )
A.-2≤a≤6B.a≤-2或a≥6C.-2<a<6D.a<-2或a>6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若△ABC的内角A,B,C的对边分别为a,b,c,且acosA=bcosB,则(  )
A.△ABC为等腰三角形B.△ABC为等腰三角形或直角三角形
C.△ABC为等腰直角三角形D.△ABC为直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在二项式(1+$\frac{x}{2}$)8的展开式中,x3的系数为m,则${∫}_{0}^{1}$(mx+$\sqrt{1-{x}^{2}}$)dx=$\frac{7}{2}$+$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某公司奖励甲,乙,丙三个团队去A,B,C三个景点游玩,三个团队各去一个不同景点,征求三个团队意见得到:甲团队不去A;乙团队不去B;丙团队只去A或C.公司按征求意见安排,则下列说法一定正确的是(  )
A.丙团队一定去A景点B.乙团队一定去C景点
C.甲团队一定去B景点D.乙团队一定去A景点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某2017年夏令营组织5名营业员参观北京大学、清华大学等五所大学,要求每人任选一所大学参观,则有且只有两个人选择北京大学的不同方案共有(  )
A.240种B.480种C.640种D.1280种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成.该省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.下面是根据样本的调查结果绘制的等高条形图.
(1)根据已知条件与等高条形图完成下面的2×2列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?
赞成不赞成合计
城镇居民
农村居民
合计
注:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},其中n=a+b+c+d$
P(K2≥k00.100.050.005
k02.7063.8417.879
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为x,试求x的分布列及数学期望E(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα,tanβ是方程4x2+5x-1=0的两根,且$0<α<\frac{π}{2},\frac{π}{2}<β<π$.
(1)求tan(α+β)的值;
(2)求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{x}{4}π,x>0}\\{f(x+2),x≤0}\end{array}\right.$,则f(-5)的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案