精英家教网 > 高中数学 > 题目详情

已知:如图,在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程的两根,

⑴求a和b的值;

⑵△与△ABC开始时完全重合,然后让△ABC固定不动,将

以1厘米/秒的速度沿BC所在的直线向左移动.

ⅰ)设x秒后△与△ABC 的重叠部分的面积为y平方厘米,求y与x之间的函数关系式,并写出x的取值范围;

 ⅱ)几秒后重叠部分的面积等于平方厘米?

 

【答案】

 (1) a=4,b=3;(2)经过3秒后重叠部分的面积等于平方厘米。

【解析】本试题主要是考查了函数与方程问题,以及三角形的相似的虚拟官职和三角形面积的求解综合运用。

(1)∵△ABC是Rt△且BC=a,AC=b,AB=5   (a>b)

又a、b是方程的两根

进而分析得到m的值,进而求解得到a,b的值。

(2)△以1厘米/秒的速度沿BC所在直线向左移动。

∴x秒后BB′=x   则BC′=4-x

∵C′M∥AC     ∴△BC′M∽△BCA ∴     ∴

    即,进而表示得到。

解:(1)∵△ABC是Rt△且BC=a,AC=b,AB=5   (a>b)

又a、b是方程的两根

       ∴(a+b)2-2ab=25

(m-1)2-2(m+4)=25  推出 (m-8)(m+4)=0              

得m1=8    m2=-4  经检验m=-4(不合舍去)    ∴m=8                                            

∴x2-7x+12=0    x1=3    x2=4          ∴a=4,b=3          …………6分

(2) ∵△以1厘米/秒的速度沿BC所在直线向左移动。

∴x秒后BB′=x   则BC′=4-x

∵C′M∥AC     ∴△BC′M∽△BCA ∴     ∴

    即

∴y=      (0x4)    当y=时       =  

解得:x1=3   x2=5(不合舍去)

∴经过3秒后重叠部分的面积等于平方厘米。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,CB的延长线交过A、B、D三点的圆于点E.
(1)判断线段AE与CE之间的数量关系,并加以证明;
(2)若过A、B、D三点的圆记为⊙O,过E点作⊙O的切线交AC的延长线于点F,且CD:CF=1:2,求:cosF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△PAQ中,点P的坐标为(-8,0),点A在y轴上,点Q在x轴的正半轴上,∠PAQ=90°,在AQ的延长线上取一点M,使|AQ|=|MQ|.
(1)当点A在y轴上移动时,求动点M的轨迹E;
(2)直线l:y=kx-1与轨迹E交于B、C两点,已知点F的坐标为(1,0),当∠BFC为钝角时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,点A,B关于y轴对称.一曲线E过C点,动点P在曲线E上运动,且保持|PA|+|PB|的值不变.
(1)求曲线E的方程;
(2)已知点S(0,-
3
),T(0,
3
)
,求∠SPT的最小值;
(3)若点F(1,
3
2
)
是曲线E上的一点,设M,N是曲线E上不同的两点,直线FM和FN的倾斜角互补,试判断直线MN的斜率是否为定值,如果是,求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮复习精练:导数及其应用(解析版) 题型:解答题

已知:如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,CB的延长线交过A、B、D三点的圆于点E.
(1)判断线段AE与CE之间的数量关系,并加以证明;
(2)若过A、B、D三点的圆记为⊙O,过E点作⊙O的切线交AC的延长线于点F,且CD:CF=1:2,求:cosF的值.

查看答案和解析>>

同步练习册答案