【题目】已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an﹣na =0,数列{bn}的前n项和为Sn且Sn=1﹣bn .
(1)求{an}和{bn}的通项;
(2)令cn= , ①求{cn}的前n项和Tn;
②是否存在正整数m满足m>3,c2 , c3 , cm成等差数列?若存在,请求出m;若不存在,请说明理由.
【答案】
(1)解:∵(n+1)a2n+1+an+1an﹣na =0,∴[(n+1)an+1﹣nan](an+1+an)=0,又an+1+an>0.
∴(n+1)an+1﹣nan=0,解得 = .
∴an= … a1= … ×1= .
∴an= .
∵数列{bn}的前n项和为Sn且Sn=1﹣bn.
∴n≥2时,bn=Sn﹣Sn﹣1=1﹣bn﹣(1﹣bn﹣1),化为:bn= bn﹣1.
n=1时,b1=S1=1﹣b1,解得b1= .
∴数列{bn}是等比数列,首项与公比都为 .
∴bn=
(2)解:①cn= = ,
∴数列{cn}的前n项和Tn= + +…+ .
∴ = + +…+ + ,
可得: = +…+ ﹣ = ﹣ ,
可得:Sn=2﹣ .
②假设存在正整数m满足m>3,c2,c3,cm成等差数列,
则2c3=c2+cm,
∴ = + ,化为:2m﹣2=m.
m=4时,满足:2m﹣2=m.
m≥5时,2m﹣2﹣m=(1+1)m﹣2﹣m
=1+ + + +…﹣m
=1+m﹣2+ + +…﹣m
= + +…﹣1>0.
∴m≥5时,2m﹣2﹣m>0,因此2m﹣2=m无解.
综上只有m=4时,满足m>3,c2,c3,cm成等差数列
【解析】(1)(n+1)a2n+1+an+1an﹣na =0,因式分解为[(n+1)an+1﹣nan](an+1+an)=0,又an+1+an>0.可得 = .利用an= … a1 , 可得an . 数列{bn}的前n项和为Sn且Sn=1﹣bn . n≥2时,bn=Sn﹣Sn﹣1 , 化为:bn= bn﹣1 . n=1时,b1=S1=1﹣b1 , 解得b1 . 利用等比数列的通项公式即可得出bn . (2)①cn= = ,利用错位相减法与等比数列的求和公式即可得出.②假设存在正整数m满足m>3,c2 , c3 , cm成等差数列,2c3=c2+cm , 代入化为:2m﹣2=m.对m分类讨论即可得出.
科目:高中数学 来源: 题型:
【题目】以下判断正确的个数是( )
①相关系数值越小,变量之间的相关性越强.
②命题“存在”的否定是“不存在”.
③“”为真是“”为假的必要不充分条件.
④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是.
A. 4 B. 2 C. 3 D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x),g(x)都是定义在R上的函数,且满足以下条件:
①f(x)=axg(x)(a>0,a≠1);
②g(x)≠0;
③f(x)g'(x)>f'(x)g(x);
若 ,则a= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中,从男生中随机抽取了70人,从女生中随机抽取了50人,男生中喜欢数学课程的占,女生中喜欢数学课程的占,得到如下列联表.
喜欢数学课程 | 不喜欢数学课程 | 合计 | |
男生 | |||
女生 | |||
合计 |
(1)请将列联表补充完整;试判断能否有90%的把握认为喜欢数学课程与否与性别有关;
(2)从不喜欢数学课程的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,求抽取的学生中至少有1名是女生的概率..
附:,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)是定义在(﹣∞,+∞)上的增函数,实数a使得f(1﹣ax﹣x2)<f(2﹣a)对于任意x∈[0,1]都成立,则实数a的取值范围是( )
A.(﹣∞,1)
B.[﹣2,0]
C.(﹣2﹣2 ,﹣2+2 )
D.[0,1]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com