精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=|ex﹣e2a|,若f(x)在区间(﹣1,3﹣a)内的图象上存在两点,在这两点处的切线互相垂直,则实数a的取值范围是

【答案】(﹣
【解析】解:当x≥2a时,f(x)=|ex﹣e2a|=ex﹣e2a , 此时为增函数,
当x<2a时,f(x)=|ex﹣e2a|=﹣ex+e2a , 此时为减函数,
即当x=2a时,函数取得最小值0,
设两个切点为M(x1 , f(x1)),N((x2 , f(x2)),
由图象知,当两个切线垂直时,必有,x1<2a<x2
即﹣1<2a<3﹣a,得﹣ <a<1,
∵k1k2=f′(x1)f′(x2)=ex1(﹣ex2)=﹣ex1+x2=﹣1,
则ex1+x2=1,即x1+x2=0,
∵﹣1<x1<0,∴0<x2<1,且x2>2a,
∴2a<1,解得a<
综上﹣ <a<
所以答案是:(﹣ ).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的方程有实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的极值点,求的极大值;

(2)求实数的范围,使得恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6 , (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3a1+log3a2+…+log3an , 求数列{ }的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex1+x﹣2(e为自然对数的底数).g(x)=x2﹣ax﹣a+3.若存在实数x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an﹣na =0,数列{bn}的前n项和为Sn且Sn=1﹣bn
(1)求{an}和{bn}的通项;
(2)令cn= , ①求{cn}的前n项和Tn
②是否存在正整数m满足m>3,c2 , c3 , cm成等差数列?若存在,请求出m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(1,﹣2)和( ,0)在直线l:ax﹣y﹣1=0(a≠0)的两侧,则直线l的倾斜角的取值范围是(
A.(
B.(
C.(
D.(0, )∪( ,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.

(Ⅰ)若两个球颜色不同,求不同取法的种数;

(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为的菱形,且,侧面为等边三角形,且与底面垂直, 的中点.

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案